Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+2y=6,x+5y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+2y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-2y+6
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-2y+6\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{2}y+\frac{3}{2}
Whakareatia \frac{1}{4} ki te -2y+6.
-\frac{1}{2}y+\frac{3}{2}+5y=6
Whakakapia te \frac{-y+3}{2} mō te x ki tērā atu whārite, x+5y=6.
\frac{9}{2}y+\frac{3}{2}=6
Tāpiri -\frac{y}{2} ki te 5y.
\frac{9}{2}y=\frac{9}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te \frac{9}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-1+3}{2}
Whakaurua te 1 mō y ki x=-\frac{1}{2}y+\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Tāpiri \frac{3}{2} ki te -\frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=1
Kua oti te pūnaha te whakatau.
4x+2y=6,x+5y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&2\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&2\\1&5\end{matrix}\right))\left(\begin{matrix}4&2\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&5\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&2\\1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&5\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&5\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-2}&-\frac{2}{4\times 5-2}\\-\frac{1}{4\times 5-2}&\frac{4}{4\times 5-2}\end{matrix}\right)\left(\begin{matrix}6\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{18}&-\frac{1}{9}\\-\frac{1}{18}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}6\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{18}\times 6-\frac{1}{9}\times 6\\-\frac{1}{18}\times 6+\frac{2}{9}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=1
Tangohia ngā huānga poukapa x me y.
4x+2y=6,x+5y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+2y=6,4x+4\times 5y=4\times 6
Kia ōrite ai a 4x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
4x+2y=6,4x+20y=24
Whakarūnātia.
4x-4x+2y-20y=6-24
Me tango 4x+20y=24 mai i 4x+2y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-20y=6-24
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-18y=6-24
Tāpiri 2y ki te -20y.
-18y=-18
Tāpiri 6 ki te -24.
y=1
Whakawehea ngā taha e rua ki te -18.
x+5=6
Whakaurua te 1 mō y ki x+5y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Me tango 5 mai i ngā taha e rua o te whārite.
x=1,y=1
Kua oti te pūnaha te whakatau.