\left\{ \begin{array} { l } { 4 x + 2 y = 6 } \\ { 3 x - y = - 8 } \end{array} \right.
Whakaoti mō x, y
x=-1
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+2y=6,3x-y=-8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+2y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-2y+6
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-2y+6\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{2}y+\frac{3}{2}
Whakareatia \frac{1}{4} ki te -2y+6.
3\left(-\frac{1}{2}y+\frac{3}{2}\right)-y=-8
Whakakapia te \frac{-y+3}{2} mō te x ki tērā atu whārite, 3x-y=-8.
-\frac{3}{2}y+\frac{9}{2}-y=-8
Whakareatia 3 ki te \frac{-y+3}{2}.
-\frac{5}{2}y+\frac{9}{2}=-8
Tāpiri -\frac{3y}{2} ki te -y.
-\frac{5}{2}y=-\frac{25}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times 5+\frac{3}{2}
Whakaurua te 5 mō y ki x=-\frac{1}{2}y+\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-5+3}{2}
Whakareatia -\frac{1}{2} ki te 5.
x=-1
Tāpiri \frac{3}{2} ki te -\frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=5
Kua oti te pūnaha te whakatau.
4x+2y=6,3x-y=-8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&2\\3&-1\end{matrix}\right))\left(\begin{matrix}4&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\3&-1\end{matrix}\right))\left(\begin{matrix}6\\-8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\3&-1\end{matrix}\right))\left(\begin{matrix}6\\-8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\3&-1\end{matrix}\right))\left(\begin{matrix}6\\-8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-2\times 3}&-\frac{2}{4\left(-1\right)-2\times 3}\\-\frac{3}{4\left(-1\right)-2\times 3}&\frac{4}{4\left(-1\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}6\\-8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{5}\\\frac{3}{10}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}6\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 6+\frac{1}{5}\left(-8\right)\\\frac{3}{10}\times 6-\frac{2}{5}\left(-8\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=5
Tangohia ngā huānga poukapa x me y.
4x+2y=6,3x-y=-8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3\times 2y=3\times 6,4\times 3x+4\left(-1\right)y=4\left(-8\right)
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x+6y=18,12x-4y=-32
Whakarūnātia.
12x-12x+6y+4y=18+32
Me tango 12x-4y=-32 mai i 12x+6y=18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y+4y=18+32
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
10y=18+32
Tāpiri 6y ki te 4y.
10y=50
Tāpiri 18 ki te 32.
y=5
Whakawehea ngā taha e rua ki te 10.
3x-5=-8
Whakaurua te 5 mō y ki 3x-y=-8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=-3
Me tāpiri 5 ki ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 3.
x=-1,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}