Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+2y=25.2,x+5y=32
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+2y=25.2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-2y+25.2
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-2y+25.2\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{2}y+\frac{63}{10}
Whakareatia \frac{1}{4} ki te -2y+25.2.
-\frac{1}{2}y+\frac{63}{10}+5y=32
Whakakapia te -\frac{y}{2}+\frac{63}{10} mō te x ki tērā atu whārite, x+5y=32.
\frac{9}{2}y+\frac{63}{10}=32
Tāpiri -\frac{y}{2} ki te 5y.
\frac{9}{2}y=\frac{257}{10}
Me tango \frac{63}{10} mai i ngā taha e rua o te whārite.
y=\frac{257}{45}
Whakawehea ngā taha e rua o te whārite ki te \frac{9}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times \frac{257}{45}+\frac{63}{10}
Whakaurua te \frac{257}{45} mō y ki x=-\frac{1}{2}y+\frac{63}{10}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{257}{90}+\frac{63}{10}
Whakareatia -\frac{1}{2} ki te \frac{257}{45} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{31}{9}
Tāpiri \frac{63}{10} ki te -\frac{257}{90} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{31}{9},y=\frac{257}{45}
Kua oti te pūnaha te whakatau.
4x+2y=25.2,x+5y=32
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&2\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25.2\\32\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&2\\1&5\end{matrix}\right))\left(\begin{matrix}4&2\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&5\end{matrix}\right))\left(\begin{matrix}25.2\\32\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&2\\1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&5\end{matrix}\right))\left(\begin{matrix}25.2\\32\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&5\end{matrix}\right))\left(\begin{matrix}25.2\\32\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-2}&-\frac{2}{4\times 5-2}\\-\frac{1}{4\times 5-2}&\frac{4}{4\times 5-2}\end{matrix}\right)\left(\begin{matrix}25.2\\32\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{18}&-\frac{1}{9}\\-\frac{1}{18}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}25.2\\32\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{18}\times 25.2-\frac{1}{9}\times 32\\-\frac{1}{18}\times 25.2+\frac{2}{9}\times 32\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{31}{9}\\\frac{257}{45}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{31}{9},y=\frac{257}{45}
Tangohia ngā huānga poukapa x me y.
4x+2y=25.2,x+5y=32
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+2y=25.2,4x+4\times 5y=4\times 32
Kia ōrite ai a 4x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
4x+2y=25.2,4x+20y=128
Whakarūnātia.
4x-4x+2y-20y=25.2-128
Me tango 4x+20y=128 mai i 4x+2y=25.2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-20y=25.2-128
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-18y=25.2-128
Tāpiri 2y ki te -20y.
-18y=-102.8
Tāpiri 25.2 ki te -128.
y=\frac{257}{45}
Whakawehea ngā taha e rua ki te -18.
x+5\times \frac{257}{45}=32
Whakaurua te \frac{257}{45} mō y ki x+5y=32. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{257}{9}=32
Whakareatia 5 ki te \frac{257}{45}.
x=\frac{31}{9}
Me tango \frac{257}{9} mai i ngā taha e rua o te whārite.
x=\frac{31}{9},y=\frac{257}{45}
Kua oti te pūnaha te whakatau.