Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+2y=-2,2x+3y=-7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+2y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-2y-2
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-2y-2\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{2}y-\frac{1}{2}
Whakareatia \frac{1}{4} ki te -2y-2.
2\left(-\frac{1}{2}y-\frac{1}{2}\right)+3y=-7
Whakakapia te \frac{-y-1}{2} mō te x ki tērā atu whārite, 2x+3y=-7.
-y-1+3y=-7
Whakareatia 2 ki te \frac{-y-1}{2}.
2y-1=-7
Tāpiri -y ki te 3y.
2y=-6
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}\left(-3\right)-\frac{1}{2}
Whakaurua te -3 mō y ki x=-\frac{1}{2}y-\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3-1}{2}
Whakareatia -\frac{1}{2} ki te -3.
x=1
Tāpiri -\frac{1}{2} ki te \frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-3
Kua oti te pūnaha te whakatau.
4x+2y=-2,2x+3y=-7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&2\\2&3\end{matrix}\right))\left(\begin{matrix}4&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\-7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&2\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\-7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\-7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-2\times 2}&-\frac{2}{4\times 3-2\times 2}\\-\frac{2}{4\times 3-2\times 2}&\frac{4}{4\times 3-2\times 2}\end{matrix}\right)\left(\begin{matrix}-2\\-7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{4}\\-\frac{1}{4}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\-7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\left(-2\right)-\frac{1}{4}\left(-7\right)\\-\frac{1}{4}\left(-2\right)+\frac{1}{2}\left(-7\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-3
Tangohia ngā huānga poukapa x me y.
4x+2y=-2,2x+3y=-7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 4x+2\times 2y=2\left(-2\right),4\times 2x+4\times 3y=4\left(-7\right)
Kia ōrite ai a 4x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
8x+4y=-4,8x+12y=-28
Whakarūnātia.
8x-8x+4y-12y=-4+28
Me tango 8x+12y=-28 mai i 8x+4y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-12y=-4+28
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8y=-4+28
Tāpiri 4y ki te -12y.
-8y=24
Tāpiri -4 ki te 28.
y=-3
Whakawehea ngā taha e rua ki te -8.
2x+3\left(-3\right)=-7
Whakaurua te -3 mō y ki 2x+3y=-7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-9=-7
Whakareatia 3 ki te -3.
2x=2
Me tāpiri 9 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 2.
x=1,y=-3
Kua oti te pūnaha te whakatau.