\left\{ \begin{array} { l } { 4 n - 2 m - 3 r = 1 } \\ { m + 3 n - 5 r = - 4 } \\ { 3 m - 5 n + r = 0 } \end{array} \right.
Whakaoti mō n, m, r
r=-1
n=-2
m=-3
Tohaina
Kua tāruatia ki te papatopenga
m+3n-5r=-4 4n-2m-3r=1 3m-5n+r=0
Me raupapa anō ngā whārite.
m=-3n+5r-4
Me whakaoti te m+3n-5r=-4 mō m.
4n-2\left(-3n+5r-4\right)-3r=1 3\left(-3n+5r-4\right)-5n+r=0
Whakakapia te -3n+5r-4 mō te m i te whārite tuarua me te tuatoru.
n=\frac{13}{10}r-\frac{7}{10} r=\frac{3}{4}+\frac{7}{8}n
Me whakaoti ēnei whārite mō n me r takitahi.
r=\frac{3}{4}+\frac{7}{8}\left(\frac{13}{10}r-\frac{7}{10}\right)
Whakakapia te \frac{13}{10}r-\frac{7}{10} mō te n i te whārite r=\frac{3}{4}+\frac{7}{8}n.
r=-1
Me whakaoti te r=\frac{3}{4}+\frac{7}{8}\left(\frac{13}{10}r-\frac{7}{10}\right) mō r.
n=\frac{13}{10}\left(-1\right)-\frac{7}{10}
Whakakapia te -1 mō te r i te whārite n=\frac{13}{10}r-\frac{7}{10}.
n=-2
Tātaitia te n i te n=\frac{13}{10}\left(-1\right)-\frac{7}{10}.
m=-3\left(-2\right)+5\left(-1\right)-4
Whakakapia te -2 mō te n me te -1 mō r i te whārite m=-3n+5r-4.
m=-3
Tātaitia te m i te m=-3\left(-2\right)+5\left(-1\right)-4.
n=-2 m=-3 r=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}