\left\{ \begin{array} { l } { 4 ( x + y ) - 3 ( x - y ) = 10 } \\ { 2 ( x + y ) - 3 ( x - y ) = 2 } \end{array} \right.
Whakaoti mō x, y
x=3
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+4y-3\left(x-y\right)=10
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+y.
4x+4y-3x+3y=10
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-y.
x+4y+3y=10
Pahekotia te 4x me -3x, ka x.
x+7y=10
Pahekotia te 4y me 3y, ka 7y.
2x+2y-3\left(x-y\right)=2
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+y.
2x+2y-3x+3y=2
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-y.
-x+2y+3y=2
Pahekotia te 2x me -3x, ka -x.
-x+5y=2
Pahekotia te 2y me 3y, ka 5y.
x+7y=10,-x+5y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+7y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-7y+10
Me tango 7y mai i ngā taha e rua o te whārite.
-\left(-7y+10\right)+5y=2
Whakakapia te -7y+10 mō te x ki tērā atu whārite, -x+5y=2.
7y-10+5y=2
Whakareatia -1 ki te -7y+10.
12y-10=2
Tāpiri 7y ki te 5y.
12y=12
Me tāpiri 10 ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te 12.
x=-7+10
Whakaurua te 1 mō y ki x=-7y+10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Tāpiri 10 ki te -7.
x=3,y=1
Kua oti te pūnaha te whakatau.
4x+4y-3\left(x-y\right)=10
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+y.
4x+4y-3x+3y=10
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-y.
x+4y+3y=10
Pahekotia te 4x me -3x, ka x.
x+7y=10
Pahekotia te 4y me 3y, ka 7y.
2x+2y-3\left(x-y\right)=2
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+y.
2x+2y-3x+3y=2
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-y.
-x+2y+3y=2
Pahekotia te 2x me -3x, ka -x.
-x+5y=2
Pahekotia te 2y me 3y, ka 5y.
x+7y=10,-x+5y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&7\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&7\\-1&5\end{matrix}\right))\left(\begin{matrix}1&7\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&7\\-1&5\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&7\\-1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&7\\-1&5\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&7\\-1&5\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-7\left(-1\right)}&-\frac{7}{5-7\left(-1\right)}\\-\frac{-1}{5-7\left(-1\right)}&\frac{1}{5-7\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}10\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}&-\frac{7}{12}\\\frac{1}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}10\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}\times 10-\frac{7}{12}\times 2\\\frac{1}{12}\times 10+\frac{1}{12}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=1
Tangohia ngā huānga poukapa x me y.
4x+4y-3\left(x-y\right)=10
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+y.
4x+4y-3x+3y=10
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-y.
x+4y+3y=10
Pahekotia te 4x me -3x, ka x.
x+7y=10
Pahekotia te 4y me 3y, ka 7y.
2x+2y-3\left(x-y\right)=2
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+y.
2x+2y-3x+3y=2
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-y.
-x+2y+3y=2
Pahekotia te 2x me -3x, ka -x.
-x+5y=2
Pahekotia te 2y me 3y, ka 5y.
x+7y=10,-x+5y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x-7y=-10,-x+5y=2
Kia ōrite ai a x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-x+x-7y-5y=-10-2
Me tango -x+5y=2 mai i -x-7y=-10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-7y-5y=-10-2
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-12y=-10-2
Tāpiri -7y ki te -5y.
-12y=-12
Tāpiri -10 ki te -2.
y=1
Whakawehea ngā taha e rua ki te -12.
-x+5=2
Whakaurua te 1 mō y ki -x+5y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x=-3
Me tango 5 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te -1.
x=3,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}