Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x-4y-7\left(2y+x\right)=-36
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-y.
8x-4y-14y-7x=-36
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te 2y+x.
8x-18y-7x=-36
Pahekotia te -4y me -14y, ka -18y.
x-18y=-36
Pahekotia te 8x me -7x, ka x.
-2x-4-7y=-18
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+2.
-2x-7y=-18+4
Me tāpiri te 4 ki ngā taha e rua.
-2x-7y=-14
Tāpirihia te -18 ki te 4, ka -14.
x-18y=-36,-2x-7y=-14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-18y=-36
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=18y-36
Me tāpiri 18y ki ngā taha e rua o te whārite.
-2\left(18y-36\right)-7y=-14
Whakakapia te -36+18y mō te x ki tērā atu whārite, -2x-7y=-14.
-36y+72-7y=-14
Whakareatia -2 ki te -36+18y.
-43y+72=-14
Tāpiri -36y ki te -7y.
-43y=-86
Me tango 72 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te -43.
x=18\times 2-36
Whakaurua te 2 mō y ki x=18y-36. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=36-36
Whakareatia 18 ki te 2.
x=0
Tāpiri -36 ki te 36.
x=0,y=2
Kua oti te pūnaha te whakatau.
8x-4y-7\left(2y+x\right)=-36
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-y.
8x-4y-14y-7x=-36
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te 2y+x.
8x-18y-7x=-36
Pahekotia te -4y me -14y, ka -18y.
x-18y=-36
Pahekotia te 8x me -7x, ka x.
-2x-4-7y=-18
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+2.
-2x-7y=-18+4
Me tāpiri te 4 ki ngā taha e rua.
-2x-7y=-14
Tāpirihia te -18 ki te 4, ka -14.
x-18y=-36,-2x-7y=-14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-18\\-2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-36\\-14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-18\\-2&-7\end{matrix}\right))\left(\begin{matrix}1&-18\\-2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-18\\-2&-7\end{matrix}\right))\left(\begin{matrix}-36\\-14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-18\\-2&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-18\\-2&-7\end{matrix}\right))\left(\begin{matrix}-36\\-14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-18\\-2&-7\end{matrix}\right))\left(\begin{matrix}-36\\-14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-\left(-18\left(-2\right)\right)}&-\frac{-18}{-7-\left(-18\left(-2\right)\right)}\\-\frac{-2}{-7-\left(-18\left(-2\right)\right)}&\frac{1}{-7-\left(-18\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-36\\-14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{43}&-\frac{18}{43}\\-\frac{2}{43}&-\frac{1}{43}\end{matrix}\right)\left(\begin{matrix}-36\\-14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{43}\left(-36\right)-\frac{18}{43}\left(-14\right)\\-\frac{2}{43}\left(-36\right)-\frac{1}{43}\left(-14\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=2
Tangohia ngā huānga poukapa x me y.
8x-4y-7\left(2y+x\right)=-36
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-y.
8x-4y-14y-7x=-36
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te 2y+x.
8x-18y-7x=-36
Pahekotia te -4y me -14y, ka -18y.
x-18y=-36
Pahekotia te 8x me -7x, ka x.
-2x-4-7y=-18
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+2.
-2x-7y=-18+4
Me tāpiri te 4 ki ngā taha e rua.
-2x-7y=-14
Tāpirihia te -18 ki te 4, ka -14.
x-18y=-36,-2x-7y=-14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-2\left(-18\right)y=-2\left(-36\right),-2x-7y=-14
Kia ōrite ai a x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-2x+36y=72,-2x-7y=-14
Whakarūnātia.
-2x+2x+36y+7y=72+14
Me tango -2x-7y=-14 mai i -2x+36y=72 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
36y+7y=72+14
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
43y=72+14
Tāpiri 36y ki te 7y.
43y=86
Tāpiri 72 ki te 14.
y=2
Whakawehea ngā taha e rua ki te 43.
-2x-7\times 2=-14
Whakaurua te 2 mō y ki -2x-7y=-14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x-14=-14
Whakareatia -7 ki te 2.
-2x=0
Me tāpiri 14 ki ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te -2.
x=0,y=2
Kua oti te pūnaha te whakatau.