\left\{ \begin{array} { l } { 4 \cdot 4 k + b = 0 } \\ { 3 \cdot 6 k + b = 0.2 } \end{array} \right.
Whakaoti mō k, b
k=0.1
b=-1.6
Tohaina
Kua tāruatia ki te papatopenga
16k+b=0,18k+b=0.2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
16k+b=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te k mā te wehe i te k i te taha mauī o te tohu ōrite.
16k=-b
Me tango b mai i ngā taha e rua o te whārite.
k=\frac{1}{16}\left(-1\right)b
Whakawehea ngā taha e rua ki te 16.
k=-\frac{1}{16}b
Whakareatia \frac{1}{16} ki te -b.
18\left(-\frac{1}{16}\right)b+b=0.2
Whakakapia te -\frac{b}{16} mō te k ki tērā atu whārite, 18k+b=0.2.
-\frac{9}{8}b+b=0.2
Whakareatia 18 ki te -\frac{b}{16}.
-\frac{1}{8}b=0.2
Tāpiri -\frac{9b}{8} ki te b.
b=-\frac{8}{5}
Me whakarea ngā taha e rua ki te -8.
k=-\frac{1}{16}\left(-\frac{8}{5}\right)
Whakaurua te -\frac{8}{5} mō b ki k=-\frac{1}{16}b. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō k hāngai tonu.
k=\frac{1}{10}
Whakareatia -\frac{1}{16} ki te -\frac{8}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
k=\frac{1}{10},b=-\frac{8}{5}
Kua oti te pūnaha te whakatau.
16k+b=0,18k+b=0.2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}16&1\\18&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}0\\0.2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}16&1\\18&1\end{matrix}\right))\left(\begin{matrix}16&1\\18&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}16&1\\18&1\end{matrix}\right))\left(\begin{matrix}0\\0.2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}16&1\\18&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}16&1\\18&1\end{matrix}\right))\left(\begin{matrix}0\\0.2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}16&1\\18&1\end{matrix}\right))\left(\begin{matrix}0\\0.2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16-18}&-\frac{1}{16-18}\\-\frac{18}{16-18}&\frac{16}{16-18}\end{matrix}\right)\left(\begin{matrix}0\\0.2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\9&-8\end{matrix}\right)\left(\begin{matrix}0\\0.2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 0.2\\-8\times 0.2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\\-1.6\end{matrix}\right)
Mahia ngā tātaitanga.
k=\frac{1}{10},b=-1.6
Tangohia ngā huānga poukapa k me b.
16k+b=0,18k+b=0.2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
16k-18k+b-b=-0.2
Me tango 18k+b=0.2 mai i 16k+b=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
16k-18k=-0.2
Tāpiri b ki te -b. Ka whakakore atu ngā kupu b me -b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2k=-0.2
Tāpiri 16k ki te -18k.
k=\frac{1}{10}
Whakawehea ngā taha e rua ki te -2.
18\times \frac{1}{10}+b=0.2
Whakaurua te \frac{1}{10} mō k ki 18k+b=0.2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
\frac{9}{5}+b=0.2
Whakareatia 18 ki te \frac{1}{10}.
b=-\frac{8}{5}
Me tango \frac{9}{5} mai i ngā taha e rua o te whārite.
k=\frac{1}{10},b=-\frac{8}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}