Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

361x+463y=-102,463x+361y=102
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
361x+463y=-102
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
361x=-463y-102
Me tango 463y mai i ngā taha e rua o te whārite.
x=\frac{1}{361}\left(-463y-102\right)
Whakawehea ngā taha e rua ki te 361.
x=-\frac{463}{361}y-\frac{102}{361}
Whakareatia \frac{1}{361} ki te -463y-102.
463\left(-\frac{463}{361}y-\frac{102}{361}\right)+361y=102
Whakakapia te \frac{-463y-102}{361} mō te x ki tērā atu whārite, 463x+361y=102.
-\frac{214369}{361}y-\frac{47226}{361}+361y=102
Whakareatia 463 ki te \frac{-463y-102}{361}.
-\frac{84048}{361}y-\frac{47226}{361}=102
Tāpiri -\frac{214369y}{361} ki te 361y.
-\frac{84048}{361}y=\frac{84048}{361}
Me tāpiri \frac{47226}{361} ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te -\frac{84048}{361}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{463}{361}\left(-1\right)-\frac{102}{361}
Whakaurua te -1 mō y ki x=-\frac{463}{361}y-\frac{102}{361}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{463-102}{361}
Whakareatia -\frac{463}{361} ki te -1.
x=1
Tāpiri -\frac{102}{361} ki te \frac{463}{361} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-1
Kua oti te pūnaha te whakatau.
361x+463y=-102,463x+361y=102
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}361&463\\463&361\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-102\\102\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}361&463\\463&361\end{matrix}\right))\left(\begin{matrix}361&463\\463&361\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}361&463\\463&361\end{matrix}\right))\left(\begin{matrix}-102\\102\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}361&463\\463&361\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}361&463\\463&361\end{matrix}\right))\left(\begin{matrix}-102\\102\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}361&463\\463&361\end{matrix}\right))\left(\begin{matrix}-102\\102\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{361}{361\times 361-463\times 463}&-\frac{463}{361\times 361-463\times 463}\\-\frac{463}{361\times 361-463\times 463}&\frac{361}{361\times 361-463\times 463}\end{matrix}\right)\left(\begin{matrix}-102\\102\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{361}{84048}&\frac{463}{84048}\\\frac{463}{84048}&-\frac{361}{84048}\end{matrix}\right)\left(\begin{matrix}-102\\102\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{361}{84048}\left(-102\right)+\frac{463}{84048}\times 102\\\frac{463}{84048}\left(-102\right)-\frac{361}{84048}\times 102\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-1
Tangohia ngā huānga poukapa x me y.
361x+463y=-102,463x+361y=102
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
463\times 361x+463\times 463y=463\left(-102\right),361\times 463x+361\times 361y=361\times 102
Kia ōrite ai a 361x me 463x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 463 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 361.
167143x+214369y=-47226,167143x+130321y=36822
Whakarūnātia.
167143x-167143x+214369y-130321y=-47226-36822
Me tango 167143x+130321y=36822 mai i 167143x+214369y=-47226 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
214369y-130321y=-47226-36822
Tāpiri 167143x ki te -167143x. Ka whakakore atu ngā kupu 167143x me -167143x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
84048y=-47226-36822
Tāpiri 214369y ki te -130321y.
84048y=-84048
Tāpiri -47226 ki te -36822.
y=-1
Whakawehea ngā taha e rua ki te 84048.
463x+361\left(-1\right)=102
Whakaurua te -1 mō y ki 463x+361y=102. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
463x-361=102
Whakareatia 361 ki te -1.
463x=463
Me tāpiri 361 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 463.
x=1,y=-1
Kua oti te pūnaha te whakatau.