\left\{ \begin{array} { l } { 30 x + 15 y = 675 } \\ { 42 x + 20 y = 940 } \end{array} \right.
Whakaoti mō x, y
x=20
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
30x+15y=675,42x+20y=940
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
30x+15y=675
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
30x=-15y+675
Me tango 15y mai i ngā taha e rua o te whārite.
x=\frac{1}{30}\left(-15y+675\right)
Whakawehea ngā taha e rua ki te 30.
x=-\frac{1}{2}y+\frac{45}{2}
Whakareatia \frac{1}{30} ki te -15y+675.
42\left(-\frac{1}{2}y+\frac{45}{2}\right)+20y=940
Whakakapia te \frac{-y+45}{2} mō te x ki tērā atu whārite, 42x+20y=940.
-21y+945+20y=940
Whakareatia 42 ki te \frac{-y+45}{2}.
-y+945=940
Tāpiri -21y ki te 20y.
-y=-5
Me tango 945 mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te -1.
x=-\frac{1}{2}\times 5+\frac{45}{2}
Whakaurua te 5 mō y ki x=-\frac{1}{2}y+\frac{45}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-5+45}{2}
Whakareatia -\frac{1}{2} ki te 5.
x=20
Tāpiri \frac{45}{2} ki te -\frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=20,y=5
Kua oti te pūnaha te whakatau.
30x+15y=675,42x+20y=940
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}30&15\\42&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}675\\940\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}30&15\\42&20\end{matrix}\right))\left(\begin{matrix}30&15\\42&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&15\\42&20\end{matrix}\right))\left(\begin{matrix}675\\940\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}30&15\\42&20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&15\\42&20\end{matrix}\right))\left(\begin{matrix}675\\940\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&15\\42&20\end{matrix}\right))\left(\begin{matrix}675\\940\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{30\times 20-15\times 42}&-\frac{15}{30\times 20-15\times 42}\\-\frac{42}{30\times 20-15\times 42}&\frac{30}{30\times 20-15\times 42}\end{matrix}\right)\left(\begin{matrix}675\\940\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{1}{2}\\\frac{7}{5}&-1\end{matrix}\right)\left(\begin{matrix}675\\940\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 675+\frac{1}{2}\times 940\\\frac{7}{5}\times 675-940\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=20,y=5
Tangohia ngā huānga poukapa x me y.
30x+15y=675,42x+20y=940
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
42\times 30x+42\times 15y=42\times 675,30\times 42x+30\times 20y=30\times 940
Kia ōrite ai a 30x me 42x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 42 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 30.
1260x+630y=28350,1260x+600y=28200
Whakarūnātia.
1260x-1260x+630y-600y=28350-28200
Me tango 1260x+600y=28200 mai i 1260x+630y=28350 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
630y-600y=28350-28200
Tāpiri 1260x ki te -1260x. Ka whakakore atu ngā kupu 1260x me -1260x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
30y=28350-28200
Tāpiri 630y ki te -600y.
30y=150
Tāpiri 28350 ki te -28200.
y=5
Whakawehea ngā taha e rua ki te 30.
42x+20\times 5=940
Whakaurua te 5 mō y ki 42x+20y=940. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
42x+100=940
Whakareatia 20 ki te 5.
42x=840
Me tango 100 mai i ngā taha e rua o te whārite.
x=20
Whakawehea ngā taha e rua ki te 42.
x=20,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}