\left\{ \begin{array} { l } { 3 y - 7 x = - 9 } \\ { 5 x + 2 y = 23 } \end{array} \right.
Whakaoti mō y, x
x=3
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
3y-7x=-9,2y+5x=23
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3y-7x=-9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
3y=7x-9
Me tāpiri 7x ki ngā taha e rua o te whārite.
y=\frac{1}{3}\left(7x-9\right)
Whakawehea ngā taha e rua ki te 3.
y=\frac{7}{3}x-3
Whakareatia \frac{1}{3} ki te 7x-9.
2\left(\frac{7}{3}x-3\right)+5x=23
Whakakapia te \frac{7x}{3}-3 mō te y ki tērā atu whārite, 2y+5x=23.
\frac{14}{3}x-6+5x=23
Whakareatia 2 ki te \frac{7x}{3}-3.
\frac{29}{3}x-6=23
Tāpiri \frac{14x}{3} ki te 5x.
\frac{29}{3}x=29
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua o te whārite ki te \frac{29}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{7}{3}\times 3-3
Whakaurua te 3 mō x ki y=\frac{7}{3}x-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=7-3
Whakareatia \frac{7}{3} ki te 3.
y=4
Tāpiri -3 ki te 7.
y=4,x=3
Kua oti te pūnaha te whakatau.
3y-7x=-9,2y+5x=23
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-7\\2&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-9\\23\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-7\\2&5\end{matrix}\right))\left(\begin{matrix}3&-7\\2&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\2&5\end{matrix}\right))\left(\begin{matrix}-9\\23\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-7\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\2&5\end{matrix}\right))\left(\begin{matrix}-9\\23\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\2&5\end{matrix}\right))\left(\begin{matrix}-9\\23\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-\left(-7\times 2\right)}&-\frac{-7}{3\times 5-\left(-7\times 2\right)}\\-\frac{2}{3\times 5-\left(-7\times 2\right)}&\frac{3}{3\times 5-\left(-7\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-9\\23\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{29}&\frac{7}{29}\\-\frac{2}{29}&\frac{3}{29}\end{matrix}\right)\left(\begin{matrix}-9\\23\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{29}\left(-9\right)+\frac{7}{29}\times 23\\-\frac{2}{29}\left(-9\right)+\frac{3}{29}\times 23\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Mahia ngā tātaitanga.
y=4,x=3
Tangohia ngā huānga poukapa y me x.
3y-7x=-9,2y+5x=23
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3y+2\left(-7\right)x=2\left(-9\right),3\times 2y+3\times 5x=3\times 23
Kia ōrite ai a 3y me 2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6y-14x=-18,6y+15x=69
Whakarūnātia.
6y-6y-14x-15x=-18-69
Me tango 6y+15x=69 mai i 6y-14x=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-14x-15x=-18-69
Tāpiri 6y ki te -6y. Ka whakakore atu ngā kupu 6y me -6y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-29x=-18-69
Tāpiri -14x ki te -15x.
-29x=-87
Tāpiri -18 ki te -69.
x=3
Whakawehea ngā taha e rua ki te -29.
2y+5\times 3=23
Whakaurua te 3 mō x ki 2y+5x=23. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
2y+15=23
Whakareatia 5 ki te 3.
2y=8
Me tango 15 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te 2.
y=4,x=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}