\left\{ \begin{array} { l } { 3 y = - 9 x + 9 } \\ { - 2 x + 2 y = 6 } \end{array} \right.
Whakaoti mō y, x
x=0
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
3y+9x=9
Whakaarohia te whārite tuatahi. Me tāpiri te 9x ki ngā taha e rua.
3y+9x=9,2y-2x=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3y+9x=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
3y=-9x+9
Me tango 9x mai i ngā taha e rua o te whārite.
y=\frac{1}{3}\left(-9x+9\right)
Whakawehea ngā taha e rua ki te 3.
y=-3x+3
Whakareatia \frac{1}{3} ki te -9x+9.
2\left(-3x+3\right)-2x=6
Whakakapia te -3x+3 mō te y ki tērā atu whārite, 2y-2x=6.
-6x+6-2x=6
Whakareatia 2 ki te -3x+3.
-8x+6=6
Tāpiri -6x ki te -2x.
-8x=0
Me tango 6 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te -8.
y=3
Whakaurua te 0 mō x ki y=-3x+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=3,x=0
Kua oti te pūnaha te whakatau.
3y+9x=9
Whakaarohia te whārite tuatahi. Me tāpiri te 9x ki ngā taha e rua.
3y+9x=9,2y-2x=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&9\\2&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}9\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&9\\2&-2\end{matrix}\right))\left(\begin{matrix}3&9\\2&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&9\\2&-2\end{matrix}\right))\left(\begin{matrix}9\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&9\\2&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&9\\2&-2\end{matrix}\right))\left(\begin{matrix}9\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&9\\2&-2\end{matrix}\right))\left(\begin{matrix}9\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-9\times 2}&-\frac{9}{3\left(-2\right)-9\times 2}\\-\frac{2}{3\left(-2\right)-9\times 2}&\frac{3}{3\left(-2\right)-9\times 2}\end{matrix}\right)\left(\begin{matrix}9\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{3}{8}\\\frac{1}{12}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}9\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 9+\frac{3}{8}\times 6\\\frac{1}{12}\times 9-\frac{1}{8}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Mahia ngā tātaitanga.
y=3,x=0
Tangohia ngā huānga poukapa y me x.
3y+9x=9
Whakaarohia te whārite tuatahi. Me tāpiri te 9x ki ngā taha e rua.
3y+9x=9,2y-2x=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3y+2\times 9x=2\times 9,3\times 2y+3\left(-2\right)x=3\times 6
Kia ōrite ai a 3y me 2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6y+18x=18,6y-6x=18
Whakarūnātia.
6y-6y+18x+6x=18-18
Me tango 6y-6x=18 mai i 6y+18x=18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18x+6x=18-18
Tāpiri 6y ki te -6y. Ka whakakore atu ngā kupu 6y me -6y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
24x=18-18
Tāpiri 18x ki te 6x.
24x=0
Tāpiri 18 ki te -18.
x=0
Whakawehea ngā taha e rua ki te 24.
2y=6
Whakaurua te 0 mō x ki 2y-2x=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=3
Whakawehea ngā taha e rua ki te 2.
y=3,x=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}