\left\{ \begin{array} { l } { 3 x - y = 6 } \\ { 2 x + \frac { 1 } { 3 } y = 8 } \end{array} \right.
Whakaoti mō x, y
x = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-y=6,2x+\frac{1}{3}y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y+6
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y+6\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y+2
Whakareatia \frac{1}{3} ki te y+6.
2\left(\frac{1}{3}y+2\right)+\frac{1}{3}y=8
Whakakapia te \frac{y}{3}+2 mō te x ki tērā atu whārite, 2x+\frac{1}{3}y=8.
\frac{2}{3}y+4+\frac{1}{3}y=8
Whakareatia 2 ki te \frac{y}{3}+2.
y+4=8
Tāpiri \frac{2y}{3} ki te \frac{y}{3}.
y=4
Me tango 4 mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\times 4+2
Whakaurua te 4 mō y ki x=\frac{1}{3}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4}{3}+2
Whakareatia \frac{1}{3} ki te 4.
x=\frac{10}{3}
Tāpiri 2 ki te \frac{4}{3}.
x=\frac{10}{3},y=4
Kua oti te pūnaha te whakatau.
3x-y=6,2x+\frac{1}{3}y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{3\times \frac{1}{3}-\left(-2\right)}&-\frac{-1}{3\times \frac{1}{3}-\left(-2\right)}\\-\frac{2}{3\times \frac{1}{3}-\left(-2\right)}&\frac{3}{3\times \frac{1}{3}-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{1}{3}\\-\frac{2}{3}&1\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 6+\frac{1}{3}\times 8\\-\frac{2}{3}\times 6+8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{3}\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{10}{3},y=4
Tangohia ngā huānga poukapa x me y.
3x-y=6,2x+\frac{1}{3}y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-1\right)y=2\times 6,3\times 2x+3\times \frac{1}{3}y=3\times 8
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-2y=12,6x+y=24
Whakarūnātia.
6x-6x-2y-y=12-24
Me tango 6x+y=24 mai i 6x-2y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-y=12-24
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=12-24
Tāpiri -2y ki te -y.
-3y=-12
Tāpiri 12 ki te -24.
y=4
Whakawehea ngā taha e rua ki te -3.
2x+\frac{1}{3}\times 4=8
Whakaurua te 4 mō y ki 2x+\frac{1}{3}y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+\frac{4}{3}=8
Whakareatia \frac{1}{3} ki te 4.
2x=\frac{20}{3}
Me tango \frac{4}{3} mai i ngā taha e rua o te whārite.
x=\frac{10}{3}
Whakawehea ngā taha e rua ki te 2.
x=\frac{10}{3},y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}