\left\{ \begin{array} { l } { 3 x - y = 5 } \\ { 5 y - 1 = 3 x + 5 ( 2 ) } \end{array} \right.
Whakaoti mō x, y
x=3
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
5y-1=3x+10
Whakaarohia te whārite tuarua. Whakareatia te 5 ki te 2, ka 10.
5y-1-3x=10
Tangohia te 3x mai i ngā taha e rua.
5y-3x=10+1
Me tāpiri te 1 ki ngā taha e rua.
5y-3x=11
Tāpirihia te 10 ki te 1, ka 11.
3x-y=5,-3x+5y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y+5
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y+5\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y+\frac{5}{3}
Whakareatia \frac{1}{3} ki te y+5.
-3\left(\frac{1}{3}y+\frac{5}{3}\right)+5y=11
Whakakapia te \frac{5+y}{3} mō te x ki tērā atu whārite, -3x+5y=11.
-y-5+5y=11
Whakareatia -3 ki te \frac{5+y}{3}.
4y-5=11
Tāpiri -y ki te 5y.
4y=16
Me tāpiri 5 ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{3}\times 4+\frac{5}{3}
Whakaurua te 4 mō y ki x=\frac{1}{3}y+\frac{5}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4+5}{3}
Whakareatia \frac{1}{3} ki te 4.
x=3
Tāpiri \frac{5}{3} ki te \frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=4
Kua oti te pūnaha te whakatau.
5y-1=3x+10
Whakaarohia te whārite tuarua. Whakareatia te 5 ki te 2, ka 10.
5y-1-3x=10
Tangohia te 3x mai i ngā taha e rua.
5y-3x=10+1
Me tāpiri te 1 ki ngā taha e rua.
5y-3x=11
Tāpirihia te 10 ki te 1, ka 11.
3x-y=5,-3x+5y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\-3&5\end{matrix}\right))\left(\begin{matrix}3&-1\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-3&5\end{matrix}\right))\left(\begin{matrix}5\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\-3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-3&5\end{matrix}\right))\left(\begin{matrix}5\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-3&5\end{matrix}\right))\left(\begin{matrix}5\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-\left(-\left(-3\right)\right)}&-\frac{-1}{3\times 5-\left(-\left(-3\right)\right)}\\-\frac{-3}{3\times 5-\left(-\left(-3\right)\right)}&\frac{3}{3\times 5-\left(-\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}&\frac{1}{12}\\\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}\times 5+\frac{1}{12}\times 11\\\frac{1}{4}\times 5+\frac{1}{4}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=4
Tangohia ngā huānga poukapa x me y.
5y-1=3x+10
Whakaarohia te whārite tuarua. Whakareatia te 5 ki te 2, ka 10.
5y-1-3x=10
Tangohia te 3x mai i ngā taha e rua.
5y-3x=10+1
Me tāpiri te 1 ki ngā taha e rua.
5y-3x=11
Tāpirihia te 10 ki te 1, ka 11.
3x-y=5,-3x+5y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 3x-3\left(-1\right)y=-3\times 5,3\left(-3\right)x+3\times 5y=3\times 11
Kia ōrite ai a 3x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-9x+3y=-15,-9x+15y=33
Whakarūnātia.
-9x+9x+3y-15y=-15-33
Me tango -9x+15y=33 mai i -9x+3y=-15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-15y=-15-33
Tāpiri -9x ki te 9x. Ka whakakore atu ngā kupu -9x me 9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-12y=-15-33
Tāpiri 3y ki te -15y.
-12y=-48
Tāpiri -15 ki te -33.
y=4
Whakawehea ngā taha e rua ki te -12.
-3x+5\times 4=11
Whakaurua te 4 mō y ki -3x+5y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+20=11
Whakareatia 5 ki te 4.
-3x=-9
Me tango 20 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te -3.
x=3,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}