Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-y=19,2x+7y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=19
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y+19
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y+19\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y+\frac{19}{3}
Whakareatia \frac{1}{3} ki te y+19.
2\left(\frac{1}{3}y+\frac{19}{3}\right)+7y=5
Whakakapia te \frac{19+y}{3} mō te x ki tērā atu whārite, 2x+7y=5.
\frac{2}{3}y+\frac{38}{3}+7y=5
Whakareatia 2 ki te \frac{19+y}{3}.
\frac{23}{3}y+\frac{38}{3}=5
Tāpiri \frac{2y}{3} ki te 7y.
\frac{23}{3}y=-\frac{23}{3}
Me tango \frac{38}{3} mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te \frac{23}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\left(-1\right)+\frac{19}{3}
Whakaurua te -1 mō y ki x=\frac{1}{3}y+\frac{19}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-1+19}{3}
Whakareatia \frac{1}{3} ki te -1.
x=6
Tāpiri \frac{19}{3} ki te -\frac{1}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=6,y=-1
Kua oti te pūnaha te whakatau.
3x-y=19,2x+7y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\2&7\end{matrix}\right))\left(\begin{matrix}3&-1\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&7\end{matrix}\right))\left(\begin{matrix}19\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\2&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&7\end{matrix}\right))\left(\begin{matrix}19\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&7\end{matrix}\right))\left(\begin{matrix}19\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3\times 7-\left(-2\right)}&-\frac{-1}{3\times 7-\left(-2\right)}\\-\frac{2}{3\times 7-\left(-2\right)}&\frac{3}{3\times 7-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}19\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{23}&\frac{1}{23}\\-\frac{2}{23}&\frac{3}{23}\end{matrix}\right)\left(\begin{matrix}19\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{23}\times 19+\frac{1}{23}\times 5\\-\frac{2}{23}\times 19+\frac{3}{23}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=-1
Tangohia ngā huānga poukapa x me y.
3x-y=19,2x+7y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-1\right)y=2\times 19,3\times 2x+3\times 7y=3\times 5
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-2y=38,6x+21y=15
Whakarūnātia.
6x-6x-2y-21y=38-15
Me tango 6x+21y=15 mai i 6x-2y=38 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-21y=38-15
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-23y=38-15
Tāpiri -2y ki te -21y.
-23y=23
Tāpiri 38 ki te -15.
y=-1
Whakawehea ngā taha e rua ki te -23.
2x+7\left(-1\right)=5
Whakaurua te -1 mō y ki 2x+7y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-7=5
Whakareatia 7 ki te -1.
2x=12
Me tāpiri 7 ki ngā taha e rua o te whārite.
x=6
Whakawehea ngā taha e rua ki te 2.
x=6,y=-1
Kua oti te pūnaha te whakatau.