Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-y=11,5x+3y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y+11
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y+11\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y+\frac{11}{3}
Whakareatia \frac{1}{3} ki te y+11.
5\left(\frac{1}{3}y+\frac{11}{3}\right)+3y=9
Whakakapia te \frac{11+y}{3} mō te x ki tērā atu whārite, 5x+3y=9.
\frac{5}{3}y+\frac{55}{3}+3y=9
Whakareatia 5 ki te \frac{11+y}{3}.
\frac{14}{3}y+\frac{55}{3}=9
Tāpiri \frac{5y}{3} ki te 3y.
\frac{14}{3}y=-\frac{28}{3}
Me tango \frac{55}{3} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{14}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\left(-2\right)+\frac{11}{3}
Whakaurua te -2 mō y ki x=\frac{1}{3}y+\frac{11}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2+11}{3}
Whakareatia \frac{1}{3} ki te -2.
x=3
Tāpiri \frac{11}{3} ki te -\frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=-2
Kua oti te pūnaha te whakatau.
3x-y=11,5x+3y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}3&-1\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\5&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-5\right)}&-\frac{-1}{3\times 3-\left(-5\right)}\\-\frac{5}{3\times 3-\left(-5\right)}&\frac{3}{3\times 3-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}11\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}&\frac{1}{14}\\-\frac{5}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}11\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}\times 11+\frac{1}{14}\times 9\\-\frac{5}{14}\times 11+\frac{3}{14}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=-2
Tangohia ngā huānga poukapa x me y.
3x-y=11,5x+3y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 3x+5\left(-1\right)y=5\times 11,3\times 5x+3\times 3y=3\times 9
Kia ōrite ai a 3x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
15x-5y=55,15x+9y=27
Whakarūnātia.
15x-15x-5y-9y=55-27
Me tango 15x+9y=27 mai i 15x-5y=55 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5y-9y=55-27
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-14y=55-27
Tāpiri -5y ki te -9y.
-14y=28
Tāpiri 55 ki te -27.
y=-2
Whakawehea ngā taha e rua ki te -14.
5x+3\left(-2\right)=9
Whakaurua te -2 mō y ki 5x+3y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-6=9
Whakareatia 3 ki te -2.
5x=15
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 5.
x=3,y=-2
Kua oti te pūnaha te whakatau.