Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-y=1,5x-3y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y+1
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y+1\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y+\frac{1}{3}
Whakareatia \frac{1}{3} ki te y+1.
5\left(\frac{1}{3}y+\frac{1}{3}\right)-3y=1
Whakakapia te \frac{1+y}{3} mō te x ki tērā atu whārite, 5x-3y=1.
\frac{5}{3}y+\frac{5}{3}-3y=1
Whakareatia 5 ki te \frac{1+y}{3}.
-\frac{4}{3}y+\frac{5}{3}=1
Tāpiri \frac{5y}{3} ki te -3y.
-\frac{4}{3}y=-\frac{2}{3}
Me tango \frac{5}{3} mai i ngā taha e rua o te whārite.
y=\frac{1}{2}
Whakawehea ngā taha e rua o te whārite ki te -\frac{4}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\times \frac{1}{2}+\frac{1}{3}
Whakaurua te \frac{1}{2} mō y ki x=\frac{1}{3}y+\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1}{6}+\frac{1}{3}
Whakareatia \frac{1}{3} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{2}
Tāpiri \frac{1}{3} ki te \frac{1}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{2},y=\frac{1}{2}
Kua oti te pūnaha te whakatau.
3x-y=1,5x-3y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right))\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\5&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-\left(-5\right)}&-\frac{-1}{3\left(-3\right)-\left(-5\right)}\\-\frac{5}{3\left(-3\right)-\left(-5\right)}&\frac{3}{3\left(-3\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&-\frac{1}{4}\\\frac{5}{4}&-\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3-1}{4}\\\frac{5-3}{4}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{2},y=\frac{1}{2}
Tangohia ngā huānga poukapa x me y.
3x-y=1,5x-3y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 3x+5\left(-1\right)y=5,3\times 5x+3\left(-3\right)y=3
Kia ōrite ai a 3x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
15x-5y=5,15x-9y=3
Whakarūnātia.
15x-15x-5y+9y=5-3
Me tango 15x-9y=3 mai i 15x-5y=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5y+9y=5-3
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4y=5-3
Tāpiri -5y ki te 9y.
4y=2
Tāpiri 5 ki te -3.
y=\frac{1}{2}
Whakawehea ngā taha e rua ki te 4.
5x-3\times \frac{1}{2}=1
Whakaurua te \frac{1}{2} mō y ki 5x-3y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-\frac{3}{2}=1
Whakareatia -3 ki te \frac{1}{2}.
5x=\frac{5}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
x=\frac{1}{2}
Whakawehea ngā taha e rua ki te 5.
x=\frac{1}{2},y=\frac{1}{2}
Kua oti te pūnaha te whakatau.