Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-y=-1,-x+2y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y-1
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y-1\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y-\frac{1}{3}
Whakareatia \frac{1}{3} ki te y-1.
-\left(\frac{1}{3}y-\frac{1}{3}\right)+2y=7
Whakakapia te \frac{-1+y}{3} mō te x ki tērā atu whārite, -x+2y=7.
-\frac{1}{3}y+\frac{1}{3}+2y=7
Whakareatia -1 ki te \frac{-1+y}{3}.
\frac{5}{3}y+\frac{1}{3}=7
Tāpiri -\frac{y}{3} ki te 2y.
\frac{5}{3}y=\frac{20}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\times 4-\frac{1}{3}
Whakaurua te 4 mō y ki x=\frac{1}{3}y-\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4-1}{3}
Whakareatia \frac{1}{3} ki te 4.
x=1
Tāpiri -\frac{1}{3} ki te \frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=4
Kua oti te pūnaha te whakatau.
3x-y=-1,-x+2y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\-1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-\left(-1\right)\right)}&-\frac{-1}{3\times 2-\left(-\left(-1\right)\right)}\\-\frac{-1}{3\times 2-\left(-\left(-1\right)\right)}&\frac{3}{3\times 2-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-1\right)+\frac{1}{5}\times 7\\\frac{1}{5}\left(-1\right)+\frac{3}{5}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=4
Tangohia ngā huānga poukapa x me y.
3x-y=-1,-x+2y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3x-\left(-y\right)=-\left(-1\right),3\left(-1\right)x+3\times 2y=3\times 7
Kia ōrite ai a 3x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-3x+y=1,-3x+6y=21
Whakarūnātia.
-3x+3x+y-6y=1-21
Me tango -3x+6y=21 mai i -3x+y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-6y=1-21
Tāpiri -3x ki te 3x. Ka whakakore atu ngā kupu -3x me 3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=1-21
Tāpiri y ki te -6y.
-5y=-20
Tāpiri 1 ki te -21.
y=4
Whakawehea ngā taha e rua ki te -5.
-x+2\times 4=7
Whakaurua te 4 mō y ki -x+2y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x+8=7
Whakareatia 2 ki te 4.
-x=-1
Me tango 8 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -1.
x=1,y=4
Kua oti te pūnaha te whakatau.