\left\{ \begin{array} { l } { 3 x - 8 y = 9 } \\ { 4 x + 3 y = - 10 } \end{array} \right.
Whakaoti mō x, y
x = -\frac{53}{41} = -1\frac{12}{41} \approx -1.292682927
y = -\frac{66}{41} = -1\frac{25}{41} \approx -1.609756098
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-8y=9,4x+3y=-10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-8y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=8y+9
Me tāpiri 8y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(8y+9\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{8}{3}y+3
Whakareatia \frac{1}{3} ki te 8y+9.
4\left(\frac{8}{3}y+3\right)+3y=-10
Whakakapia te \frac{8y}{3}+3 mō te x ki tērā atu whārite, 4x+3y=-10.
\frac{32}{3}y+12+3y=-10
Whakareatia 4 ki te \frac{8y}{3}+3.
\frac{41}{3}y+12=-10
Tāpiri \frac{32y}{3} ki te 3y.
\frac{41}{3}y=-22
Me tango 12 mai i ngā taha e rua o te whārite.
y=-\frac{66}{41}
Whakawehea ngā taha e rua o te whārite ki te \frac{41}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{8}{3}\left(-\frac{66}{41}\right)+3
Whakaurua te -\frac{66}{41} mō y ki x=\frac{8}{3}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{176}{41}+3
Whakareatia \frac{8}{3} ki te -\frac{66}{41} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{53}{41}
Tāpiri 3 ki te -\frac{176}{41}.
x=-\frac{53}{41},y=-\frac{66}{41}
Kua oti te pūnaha te whakatau.
3x-8y=9,4x+3y=-10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-8\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-8\\4&3\end{matrix}\right))\left(\begin{matrix}3&-8\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-8\\4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-8\times 4\right)}&-\frac{-8}{3\times 3-\left(-8\times 4\right)}\\-\frac{4}{3\times 3-\left(-8\times 4\right)}&\frac{3}{3\times 3-\left(-8\times 4\right)}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{41}&\frac{8}{41}\\-\frac{4}{41}&\frac{3}{41}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{41}\times 9+\frac{8}{41}\left(-10\right)\\-\frac{4}{41}\times 9+\frac{3}{41}\left(-10\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{53}{41}\\-\frac{66}{41}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{53}{41},y=-\frac{66}{41}
Tangohia ngā huānga poukapa x me y.
3x-8y=9,4x+3y=-10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3x+4\left(-8\right)y=4\times 9,3\times 4x+3\times 3y=3\left(-10\right)
Kia ōrite ai a 3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12x-32y=36,12x+9y=-30
Whakarūnātia.
12x-12x-32y-9y=36+30
Me tango 12x+9y=-30 mai i 12x-32y=36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-32y-9y=36+30
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-41y=36+30
Tāpiri -32y ki te -9y.
-41y=66
Tāpiri 36 ki te 30.
y=-\frac{66}{41}
Whakawehea ngā taha e rua ki te -41.
4x+3\left(-\frac{66}{41}\right)=-10
Whakaurua te -\frac{66}{41} mō y ki 4x+3y=-10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-\frac{198}{41}=-10
Whakareatia 3 ki te -\frac{66}{41}.
4x=-\frac{212}{41}
Me tāpiri \frac{198}{41} ki ngā taha e rua o te whārite.
x=-\frac{53}{41}
Whakawehea ngā taha e rua ki te 4.
x=-\frac{53}{41},y=-\frac{66}{41}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}