Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-8y=-13,2x+5y=-19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-8y=-13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=8y-13
Me tāpiri 8y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(8y-13\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{8}{3}y-\frac{13}{3}
Whakareatia \frac{1}{3} ki te 8y-13.
2\left(\frac{8}{3}y-\frac{13}{3}\right)+5y=-19
Whakakapia te \frac{8y-13}{3} mō te x ki tērā atu whārite, 2x+5y=-19.
\frac{16}{3}y-\frac{26}{3}+5y=-19
Whakareatia 2 ki te \frac{8y-13}{3}.
\frac{31}{3}y-\frac{26}{3}=-19
Tāpiri \frac{16y}{3} ki te 5y.
\frac{31}{3}y=-\frac{31}{3}
Me tāpiri \frac{26}{3} ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te \frac{31}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{8}{3}\left(-1\right)-\frac{13}{3}
Whakaurua te -1 mō y ki x=\frac{8}{3}y-\frac{13}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-8-13}{3}
Whakareatia \frac{8}{3} ki te -1.
x=-7
Tāpiri -\frac{13}{3} ki te -\frac{8}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-7,y=-1
Kua oti te pūnaha te whakatau.
3x-8y=-13,2x+5y=-19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-8\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-13\\-19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-8\\2&5\end{matrix}\right))\left(\begin{matrix}3&-8\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\2&5\end{matrix}\right))\left(\begin{matrix}-13\\-19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-8\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\2&5\end{matrix}\right))\left(\begin{matrix}-13\\-19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\2&5\end{matrix}\right))\left(\begin{matrix}-13\\-19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-\left(-8\times 2\right)}&-\frac{-8}{3\times 5-\left(-8\times 2\right)}\\-\frac{2}{3\times 5-\left(-8\times 2\right)}&\frac{3}{3\times 5-\left(-8\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-13\\-19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}&\frac{8}{31}\\-\frac{2}{31}&\frac{3}{31}\end{matrix}\right)\left(\begin{matrix}-13\\-19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}\left(-13\right)+\frac{8}{31}\left(-19\right)\\-\frac{2}{31}\left(-13\right)+\frac{3}{31}\left(-19\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-7,y=-1
Tangohia ngā huānga poukapa x me y.
3x-8y=-13,2x+5y=-19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-8\right)y=2\left(-13\right),3\times 2x+3\times 5y=3\left(-19\right)
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-16y=-26,6x+15y=-57
Whakarūnātia.
6x-6x-16y-15y=-26+57
Me tango 6x+15y=-57 mai i 6x-16y=-26 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-16y-15y=-26+57
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-31y=-26+57
Tāpiri -16y ki te -15y.
-31y=31
Tāpiri -26 ki te 57.
y=-1
Whakawehea ngā taha e rua ki te -31.
2x+5\left(-1\right)=-19
Whakaurua te -1 mō y ki 2x+5y=-19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-5=-19
Whakareatia 5 ki te -1.
2x=-14
Me tāpiri 5 ki ngā taha e rua o te whārite.
x=-7
Whakawehea ngā taha e rua ki te 2.
x=-7,y=-1
Kua oti te pūnaha te whakatau.