\left\{ \begin{array} { l } { 3 x - 7 y = 114 } \\ { 4 x - 3 y = 76 } \end{array} \right.
Whakaoti mō x, y
x=10
y=-12
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-7y=114,4x-3y=76
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-7y=114
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=7y+114
Me tāpiri 7y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(7y+114\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{7}{3}y+38
Whakareatia \frac{1}{3} ki te 7y+114.
4\left(\frac{7}{3}y+38\right)-3y=76
Whakakapia te \frac{7y}{3}+38 mō te x ki tērā atu whārite, 4x-3y=76.
\frac{28}{3}y+152-3y=76
Whakareatia 4 ki te \frac{7y}{3}+38.
\frac{19}{3}y+152=76
Tāpiri \frac{28y}{3} ki te -3y.
\frac{19}{3}y=-76
Me tango 152 mai i ngā taha e rua o te whārite.
y=-12
Whakawehea ngā taha e rua o te whārite ki te \frac{19}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7}{3}\left(-12\right)+38
Whakaurua te -12 mō y ki x=\frac{7}{3}y+38. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-28+38
Whakareatia \frac{7}{3} ki te -12.
x=10
Tāpiri 38 ki te -28.
x=10,y=-12
Kua oti te pūnaha te whakatau.
3x-7y=114,4x-3y=76
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-7\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}114\\76\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-7\\4&-3\end{matrix}\right))\left(\begin{matrix}3&-7\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\4&-3\end{matrix}\right))\left(\begin{matrix}114\\76\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-7\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\4&-3\end{matrix}\right))\left(\begin{matrix}114\\76\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\4&-3\end{matrix}\right))\left(\begin{matrix}114\\76\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-\left(-7\times 4\right)}&-\frac{-7}{3\left(-3\right)-\left(-7\times 4\right)}\\-\frac{4}{3\left(-3\right)-\left(-7\times 4\right)}&\frac{3}{3\left(-3\right)-\left(-7\times 4\right)}\end{matrix}\right)\left(\begin{matrix}114\\76\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{19}&\frac{7}{19}\\-\frac{4}{19}&\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}114\\76\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{19}\times 114+\frac{7}{19}\times 76\\-\frac{4}{19}\times 114+\frac{3}{19}\times 76\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-12\end{matrix}\right)
Mahia ngā tātaitanga.
x=10,y=-12
Tangohia ngā huānga poukapa x me y.
3x-7y=114,4x-3y=76
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3x+4\left(-7\right)y=4\times 114,3\times 4x+3\left(-3\right)y=3\times 76
Kia ōrite ai a 3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12x-28y=456,12x-9y=228
Whakarūnātia.
12x-12x-28y+9y=456-228
Me tango 12x-9y=228 mai i 12x-28y=456 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-28y+9y=456-228
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19y=456-228
Tāpiri -28y ki te 9y.
-19y=228
Tāpiri 456 ki te -228.
y=-12
Whakawehea ngā taha e rua ki te -19.
4x-3\left(-12\right)=76
Whakaurua te -12 mō y ki 4x-3y=76. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+36=76
Whakareatia -3 ki te -12.
4x=40
Me tango 36 mai i ngā taha e rua o te whārite.
x=10
Whakawehea ngā taha e rua ki te 4.
x=10,y=-12
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}