\left\{ \begin{array} { l } { 3 x - 5 y = 7 } \\ { 4 x + 2 y = 5 } \end{array} \right.
Whakaoti mō x, y
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
y=-\frac{1}{2}=-0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-5y=7,4x+2y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-5y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=5y+7
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(5y+7\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{5}{3}y+\frac{7}{3}
Whakareatia \frac{1}{3} ki te 5y+7.
4\left(\frac{5}{3}y+\frac{7}{3}\right)+2y=5
Whakakapia te \frac{5y+7}{3} mō te x ki tērā atu whārite, 4x+2y=5.
\frac{20}{3}y+\frac{28}{3}+2y=5
Whakareatia 4 ki te \frac{5y+7}{3}.
\frac{26}{3}y+\frac{28}{3}=5
Tāpiri \frac{20y}{3} ki te 2y.
\frac{26}{3}y=-\frac{13}{3}
Me tango \frac{28}{3} mai i ngā taha e rua o te whārite.
y=-\frac{1}{2}
Whakawehea ngā taha e rua o te whārite ki te \frac{26}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{3}\left(-\frac{1}{2}\right)+\frac{7}{3}
Whakaurua te -\frac{1}{2} mō y ki x=\frac{5}{3}y+\frac{7}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{5}{6}+\frac{7}{3}
Whakareatia \frac{5}{3} ki te -\frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{3}{2}
Tāpiri \frac{7}{3} ki te -\frac{5}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{3}{2},y=-\frac{1}{2}
Kua oti te pūnaha te whakatau.
3x-5y=7,4x+2y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-5\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-5\\4&2\end{matrix}\right))\left(\begin{matrix}3&-5\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\4&2\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-5\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\4&2\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\4&2\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-5\times 4\right)}&-\frac{-5}{3\times 2-\left(-5\times 4\right)}\\-\frac{4}{3\times 2-\left(-5\times 4\right)}&\frac{3}{3\times 2-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&\frac{5}{26}\\-\frac{2}{13}&\frac{3}{26}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\times 7+\frac{5}{26}\times 5\\-\frac{2}{13}\times 7+\frac{3}{26}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{3}{2},y=-\frac{1}{2}
Tangohia ngā huānga poukapa x me y.
3x-5y=7,4x+2y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3x+4\left(-5\right)y=4\times 7,3\times 4x+3\times 2y=3\times 5
Kia ōrite ai a 3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12x-20y=28,12x+6y=15
Whakarūnātia.
12x-12x-20y-6y=28-15
Me tango 12x+6y=15 mai i 12x-20y=28 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-20y-6y=28-15
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-26y=28-15
Tāpiri -20y ki te -6y.
-26y=13
Tāpiri 28 ki te -15.
y=-\frac{1}{2}
Whakawehea ngā taha e rua ki te -26.
4x+2\left(-\frac{1}{2}\right)=5
Whakaurua te -\frac{1}{2} mō y ki 4x+2y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-1=5
Whakareatia 2 ki te -\frac{1}{2}.
4x=6
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=\frac{3}{2}
Whakawehea ngā taha e rua ki te 4.
x=\frac{3}{2},y=-\frac{1}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}