\left\{ \begin{array} { l } { 3 x - 4 y = 7 } \\ { \frac { x + 3 } { 2 } - y = 4 } \end{array} \right.
Whakaoti mō x, y
x=-3
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-4y=7,\frac{1}{2}\left(x+3\right)-y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-4y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=4y+7
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(4y+7\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{4}{3}y+\frac{7}{3}
Whakareatia \frac{1}{3} ki te 4y+7.
\frac{1}{2}\left(\frac{4}{3}y+\frac{7}{3}+3\right)-y=4
Whakakapia te \frac{4y+7}{3} mō te x ki tērā atu whārite, \frac{1}{2}\left(x+3\right)-y=4.
\frac{1}{2}\left(\frac{4}{3}y+\frac{16}{3}\right)-y=4
Tāpiri \frac{7}{3} ki te 3.
\frac{2}{3}y+\frac{8}{3}-y=4
Whakareatia \frac{1}{2} ki te \frac{16+4y}{3}.
-\frac{1}{3}y+\frac{8}{3}=4
Tāpiri \frac{2y}{3} ki te -y.
-\frac{1}{3}y=\frac{4}{3}
Me tango \frac{8}{3} mai i ngā taha e rua o te whārite.
y=-4
Me whakarea ngā taha e rua ki te -3.
x=\frac{4}{3}\left(-4\right)+\frac{7}{3}
Whakaurua te -4 mō y ki x=\frac{4}{3}y+\frac{7}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-16+7}{3}
Whakareatia \frac{4}{3} ki te -4.
x=-3
Tāpiri \frac{7}{3} ki te -\frac{16}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-3,y=-4
Kua oti te pūnaha te whakatau.
3x-4y=7,\frac{1}{2}\left(x+3\right)-y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\frac{1}{2}\left(x+3\right)-y=4
Whakarūnātia te whārite tuarua ki te āhua tānga ngahuru.
\frac{1}{2}x+\frac{3}{2}-y=4
Whakareatia \frac{1}{2} ki te x+3.
\frac{1}{2}x-y=\frac{5}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}&-\frac{-4}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}\\-\frac{\frac{1}{2}}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}&\frac{3}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-4\\\frac{1}{2}&-3\end{matrix}\right)\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7-4\times \frac{5}{2}\\\frac{1}{2}\times 7-3\times \frac{5}{2}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=-4
Tangohia ngā huānga poukapa x me y.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}