\left\{ \begin{array} { l } { 3 x - 2 y - 2 = 6 } \\ { 3 x + 2 y = 4 } \end{array} \right.
Whakaoti mō x, y
x=2
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-2y-2=6,3x+2y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y-2=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x-2y=8
Me tāpiri 2 ki ngā taha e rua o te whārite.
3x=2y+8
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(2y+8\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y+\frac{8}{3}
Whakareatia \frac{1}{3} ki te 8+2y.
3\left(\frac{2}{3}y+\frac{8}{3}\right)+2y=4
Whakakapia te \frac{8+2y}{3} mō te x ki tērā atu whārite, 3x+2y=4.
2y+8+2y=4
Whakareatia 3 ki te \frac{8+2y}{3}.
4y+8=4
Tāpiri 2y ki te 2y.
4y=-4
Me tango 8 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te 4.
x=\frac{2}{3}\left(-1\right)+\frac{8}{3}
Whakaurua te -1 mō y ki x=\frac{2}{3}y+\frac{8}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2+8}{3}
Whakareatia \frac{2}{3} ki te -1.
x=2
Tāpiri \frac{8}{3} ki te -\frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=-1
Kua oti te pūnaha te whakatau.
3x-2y-2=6,3x+2y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}3&-2\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\times 3\right)}&-\frac{-2}{3\times 2-\left(-2\times 3\right)}\\-\frac{3}{3\times 2-\left(-2\times 3\right)}&\frac{3}{3\times 2-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 8+\frac{1}{6}\times 4\\-\frac{1}{4}\times 8+\frac{1}{4}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-1
Tangohia ngā huānga poukapa x me y.
3x-2y-2=6,3x+2y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-3x-2y-2y-2=6-4
Me tango 3x+2y=4 mai i 3x-2y-2=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-2y-2=6-4
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4y-2=6-4
Tāpiri -2y ki te -2y.
-4y-2=2
Tāpiri 6 ki te -4.
-4y=4
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te -4.
3x+2\left(-1\right)=4
Whakaurua te -1 mō y ki 3x+2y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-2=4
Whakareatia 2 ki te -1.
3x=6
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 3.
x=2,y=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}