Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-2y=7,x+3y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=2y+7
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(2y+7\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y+\frac{7}{3}
Whakareatia \frac{1}{3} ki te 2y+7.
\frac{2}{3}y+\frac{7}{3}+3y=-5
Whakakapia te \frac{2y+7}{3} mō te x ki tērā atu whārite, x+3y=-5.
\frac{11}{3}y+\frac{7}{3}=-5
Tāpiri \frac{2y}{3} ki te 3y.
\frac{11}{3}y=-\frac{22}{3}
Me tango \frac{7}{3} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{3}\left(-2\right)+\frac{7}{3}
Whakaurua te -2 mō y ki x=\frac{2}{3}y+\frac{7}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-4+7}{3}
Whakareatia \frac{2}{3} ki te -2.
x=1
Tāpiri \frac{7}{3} ki te -\frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-2
Kua oti te pūnaha te whakatau.
3x-2y=7,x+3y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\1&3\end{matrix}\right))\left(\begin{matrix}3&-2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&3\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&3\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&3\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-2\right)}&-\frac{-2}{3\times 3-\left(-2\right)}\\-\frac{1}{3\times 3-\left(-2\right)}&\frac{3}{3\times 3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}7\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{2}{11}\\-\frac{1}{11}&\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}7\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 7+\frac{2}{11}\left(-5\right)\\-\frac{1}{11}\times 7+\frac{3}{11}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-2
Tangohia ngā huānga poukapa x me y.
3x-2y=7,x+3y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-2y=7,3x+3\times 3y=3\left(-5\right)
Kia ōrite ai a 3x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3x-2y=7,3x+9y=-15
Whakarūnātia.
3x-3x-2y-9y=7+15
Me tango 3x+9y=-15 mai i 3x-2y=7 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-9y=7+15
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11y=7+15
Tāpiri -2y ki te -9y.
-11y=22
Tāpiri 7 ki te 15.
y=-2
Whakawehea ngā taha e rua ki te -11.
x+3\left(-2\right)=-5
Whakaurua te -2 mō y ki x+3y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-6=-5
Whakareatia 3 ki te -2.
x=1
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=1,y=-2
Kua oti te pūnaha te whakatau.