Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-2y=60,2x+3y=17.2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y=60
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=2y+60
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(2y+60\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y+20
Whakareatia \frac{1}{3} ki te 60+2y.
2\left(\frac{2}{3}y+20\right)+3y=17.2
Whakakapia te \frac{2y}{3}+20 mō te x ki tērā atu whārite, 2x+3y=17.2.
\frac{4}{3}y+40+3y=17.2
Whakareatia 2 ki te \frac{2y}{3}+20.
\frac{13}{3}y+40=17.2
Tāpiri \frac{4y}{3} ki te 3y.
\frac{13}{3}y=-22.8
Me tango 40 mai i ngā taha e rua o te whārite.
y=-\frac{342}{65}
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{3}\left(-\frac{342}{65}\right)+20
Whakaurua te -\frac{342}{65} mō y ki x=\frac{2}{3}y+20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{228}{65}+20
Whakareatia \frac{2}{3} ki te -\frac{342}{65} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1072}{65}
Tāpiri 20 ki te -\frac{228}{65}.
x=\frac{1072}{65},y=-\frac{342}{65}
Kua oti te pūnaha te whakatau.
3x-2y=60,2x+3y=17.2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\17.2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\2&3\end{matrix}\right))\left(\begin{matrix}3&-2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&3\end{matrix}\right))\left(\begin{matrix}60\\17.2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&3\end{matrix}\right))\left(\begin{matrix}60\\17.2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&3\end{matrix}\right))\left(\begin{matrix}60\\17.2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-2\times 2\right)}&-\frac{-2}{3\times 3-\left(-2\times 2\right)}\\-\frac{2}{3\times 3-\left(-2\times 2\right)}&\frac{3}{3\times 3-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}60\\17.2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}&\frac{2}{13}\\-\frac{2}{13}&\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}60\\17.2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\times 60+\frac{2}{13}\times 17.2\\-\frac{2}{13}\times 60+\frac{3}{13}\times 17.2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1072}{65}\\-\frac{342}{65}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1072}{65},y=-\frac{342}{65}
Tangohia ngā huānga poukapa x me y.
3x-2y=60,2x+3y=17.2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-2\right)y=2\times 60,3\times 2x+3\times 3y=3\times 17.2
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-4y=120,6x+9y=51.6
Whakarūnātia.
6x-6x-4y-9y=120-51.6
Me tango 6x+9y=51.6 mai i 6x-4y=120 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-9y=120-51.6
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-13y=120-51.6
Tāpiri -4y ki te -9y.
-13y=68.4
Tāpiri 120 ki te -51.6.
y=-\frac{342}{65}
Whakawehea ngā taha e rua ki te -13.
2x+3\left(-\frac{342}{65}\right)=17.2
Whakaurua te -\frac{342}{65} mō y ki 2x+3y=17.2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-\frac{1026}{65}=17.2
Whakareatia 3 ki te -\frac{342}{65}.
2x=\frac{2144}{65}
Me tāpiri \frac{1026}{65} ki ngā taha e rua o te whārite.
x=\frac{1072}{65}
Whakawehea ngā taha e rua ki te 2.
x=\frac{1072}{65},y=-\frac{342}{65}
Kua oti te pūnaha te whakatau.