\left\{ \begin{array} { l } { 3 x - 2 y = 4 + 3 \sqrt { 3 } } \\ { 7 x - 5 y = - 1,7 \sqrt { 3 } } \end{array} \right.
Whakaoti mō x, y
x=\frac{92\sqrt{3}}{5}+20\approx 51.869734859
y=\frac{261\sqrt{3}}{10}+28\approx 73.206526078
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-2y=3\sqrt{3}+4,7x-5y=-\frac{17\sqrt{3}}{10}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y=3\sqrt{3}+4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=2y+3\sqrt{3}+4
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(2y+3\sqrt{3}+4\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y+\sqrt{3}+\frac{4}{3}
Whakareatia \frac{1}{3} ki te 2y+4+3\sqrt{3}.
7\left(\frac{2}{3}y+\sqrt{3}+\frac{4}{3}\right)-5y=-\frac{17\sqrt{3}}{10}
Whakakapia te \frac{2y}{3}+\frac{4}{3}+\sqrt{3} mō te x ki tērā atu whārite, 7x-5y=-\frac{17\sqrt{3}}{10}.
\frac{14}{3}y+7\sqrt{3}+\frac{28}{3}-5y=-\frac{17\sqrt{3}}{10}
Whakareatia 7 ki te \frac{2y}{3}+\frac{4}{3}+\sqrt{3}.
-\frac{1}{3}y+7\sqrt{3}+\frac{28}{3}=-\frac{17\sqrt{3}}{10}
Tāpiri \frac{14y}{3} ki te -5y.
-\frac{1}{3}y=-\frac{87\sqrt{3}}{10}-\frac{28}{3}
Me tango \frac{28}{3}+7\sqrt{3} mai i ngā taha e rua o te whārite.
y=\frac{261\sqrt{3}}{10}+28
Me whakarea ngā taha e rua ki te -3.
x=\frac{2}{3}\left(\frac{261\sqrt{3}}{10}+28\right)+\sqrt{3}+\frac{4}{3}
Whakaurua te \frac{261\sqrt{3}}{10}+28 mō y ki x=\frac{2}{3}y+\sqrt{3}+\frac{4}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{87\sqrt{3}}{5}+\frac{56}{3}+\sqrt{3}+\frac{4}{3}
Whakareatia \frac{2}{3} ki te \frac{261\sqrt{3}}{10}+28.
x=\frac{92\sqrt{3}}{5}+20
Tāpiri \frac{4}{3}+\sqrt{3} ki te \frac{87\sqrt{3}}{5}+\frac{56}{3}.
x=\frac{92\sqrt{3}}{5}+20,y=\frac{261\sqrt{3}}{10}+28
Kua oti te pūnaha te whakatau.
3x-2y=3\sqrt{3}+4,7x-5y=-\frac{17\sqrt{3}}{10}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 3x+7\left(-2\right)y=7\left(3\sqrt{3}+4\right),3\times 7x+3\left(-5\right)y=3\left(-\frac{17\sqrt{3}}{10}\right)
Kia ōrite ai a 3x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
21x-14y=21\sqrt{3}+28,21x-15y=-\frac{51\sqrt{3}}{10}
Whakarūnātia.
21x-21x-14y+15y=21\sqrt{3}+28+\frac{51\sqrt{3}}{10}
Me tango 21x-15y=-\frac{51\sqrt{3}}{10} mai i 21x-14y=21\sqrt{3}+28 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-14y+15y=21\sqrt{3}+28+\frac{51\sqrt{3}}{10}
Tāpiri 21x ki te -21x. Ka whakakore atu ngā kupu 21x me -21x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=21\sqrt{3}+28+\frac{51\sqrt{3}}{10}
Tāpiri -14y ki te 15y.
y=\frac{261\sqrt{3}}{10}+28
Tāpiri 28+21\sqrt{3} ki te \frac{51\sqrt{3}}{10}.
7x-5\left(\frac{261\sqrt{3}}{10}+28\right)=-\frac{17\sqrt{3}}{10}
Whakaurua te 28+\frac{261\sqrt{3}}{10} mō y ki 7x-5y=-\frac{17\sqrt{3}}{10}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x-\frac{261\sqrt{3}}{2}-140=-\frac{17\sqrt{3}}{10}
Whakareatia -5 ki te 28+\frac{261\sqrt{3}}{10}.
7x=\frac{644\sqrt{3}}{5}+140
Me tango -140-\frac{261\sqrt{3}}{2} mai i ngā taha e rua o te whārite.
x=\frac{92\sqrt{3}}{5}+20
Whakawehea ngā taha e rua ki te 7.
x=\frac{92\sqrt{3}}{5}+20,y=\frac{261\sqrt{3}}{10}+28
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}