Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-2y=-3,2x+4y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=2y-3
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(2y-3\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y-1
Whakareatia \frac{1}{3} ki te 2y-3.
2\left(\frac{2}{3}y-1\right)+4y=2
Whakakapia te \frac{2y}{3}-1 mō te x ki tērā atu whārite, 2x+4y=2.
\frac{4}{3}y-2+4y=2
Whakareatia 2 ki te \frac{2y}{3}-1.
\frac{16}{3}y-2=2
Tāpiri \frac{4y}{3} ki te 4y.
\frac{16}{3}y=4
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=\frac{3}{4}
Whakawehea ngā taha e rua o te whārite ki te \frac{16}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{3}\times \frac{3}{4}-1
Whakaurua te \frac{3}{4} mō y ki x=\frac{2}{3}y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1}{2}-1
Whakareatia \frac{2}{3} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{1}{2}
Tāpiri -1 ki te \frac{1}{2}.
x=-\frac{1}{2},y=\frac{3}{4}
Kua oti te pūnaha te whakatau.
3x-2y=-3,2x+4y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\2&4\end{matrix}\right))\left(\begin{matrix}3&-2\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&4\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&4\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&4\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-2\times 2\right)}&-\frac{-2}{3\times 4-\left(-2\times 2\right)}\\-\frac{2}{3\times 4-\left(-2\times 2\right)}&\frac{3}{3\times 4-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{8}\\-\frac{1}{8}&\frac{3}{16}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-3\right)+\frac{1}{8}\times 2\\-\frac{1}{8}\left(-3\right)+\frac{3}{16}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\\frac{3}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{1}{2},y=\frac{3}{4}
Tangohia ngā huānga poukapa x me y.
3x-2y=-3,2x+4y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-2\right)y=2\left(-3\right),3\times 2x+3\times 4y=3\times 2
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-4y=-6,6x+12y=6
Whakarūnātia.
6x-6x-4y-12y=-6-6
Me tango 6x+12y=6 mai i 6x-4y=-6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-12y=-6-6
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-16y=-6-6
Tāpiri -4y ki te -12y.
-16y=-12
Tāpiri -6 ki te -6.
y=\frac{3}{4}
Whakawehea ngā taha e rua ki te -16.
2x+4\times \frac{3}{4}=2
Whakaurua te \frac{3}{4} mō y ki 2x+4y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+3=2
Whakareatia 4 ki te \frac{3}{4}.
2x=-1
Me tango 3 mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2},y=\frac{3}{4}
Kua oti te pūnaha te whakatau.