\left\{ \begin{array} { l } { 3 x - 2 y = - 10 } \\ { 5 x - 11 y = - 9 } \end{array} \right.
Whakaoti mō x, y
x=-4
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-2y=-10,5x-11y=-9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=2y-10
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(2y-10\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y-\frac{10}{3}
Whakareatia \frac{1}{3} ki te -10+2y.
5\left(\frac{2}{3}y-\frac{10}{3}\right)-11y=-9
Whakakapia te \frac{-10+2y}{3} mō te x ki tērā atu whārite, 5x-11y=-9.
\frac{10}{3}y-\frac{50}{3}-11y=-9
Whakareatia 5 ki te \frac{-10+2y}{3}.
-\frac{23}{3}y-\frac{50}{3}=-9
Tāpiri \frac{10y}{3} ki te -11y.
-\frac{23}{3}y=\frac{23}{3}
Me tāpiri \frac{50}{3} ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te -\frac{23}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{3}\left(-1\right)-\frac{10}{3}
Whakaurua te -1 mō y ki x=\frac{2}{3}y-\frac{10}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2-10}{3}
Whakareatia \frac{2}{3} ki te -1.
x=-4
Tāpiri -\frac{10}{3} ki te -\frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-4,y=-1
Kua oti te pūnaha te whakatau.
3x-2y=-10,5x-11y=-9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right))\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right))\left(\begin{matrix}-10\\-9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\5&-11\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right))\left(\begin{matrix}-10\\-9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right))\left(\begin{matrix}-10\\-9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{3\left(-11\right)-\left(-2\times 5\right)}&-\frac{-2}{3\left(-11\right)-\left(-2\times 5\right)}\\-\frac{5}{3\left(-11\right)-\left(-2\times 5\right)}&\frac{3}{3\left(-11\right)-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-10\\-9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{23}&-\frac{2}{23}\\\frac{5}{23}&-\frac{3}{23}\end{matrix}\right)\left(\begin{matrix}-10\\-9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{23}\left(-10\right)-\frac{2}{23}\left(-9\right)\\\frac{5}{23}\left(-10\right)-\frac{3}{23}\left(-9\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=-1
Tangohia ngā huānga poukapa x me y.
3x-2y=-10,5x-11y=-9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 3x+5\left(-2\right)y=5\left(-10\right),3\times 5x+3\left(-11\right)y=3\left(-9\right)
Kia ōrite ai a 3x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
15x-10y=-50,15x-33y=-27
Whakarūnātia.
15x-15x-10y+33y=-50+27
Me tango 15x-33y=-27 mai i 15x-10y=-50 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-10y+33y=-50+27
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
23y=-50+27
Tāpiri -10y ki te 33y.
23y=-23
Tāpiri -50 ki te 27.
y=-1
Whakawehea ngā taha e rua ki te 23.
5x-11\left(-1\right)=-9
Whakaurua te -1 mō y ki 5x-11y=-9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x+11=-9
Whakareatia -11 ki te -1.
5x=-20
Me tango 11 mai i ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te 5.
x=-4,y=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}