Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+4y=0
Whakaarohia te whārite tuatahi. Me tāpiri te 4y ki ngā taha e rua.
3x+4y=0,5x-6y=38
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+4y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-4y
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-4\right)y
Whakawehea ngā taha e rua ki te 3.
x=-\frac{4}{3}y
Whakareatia \frac{1}{3} ki te -4y.
5\left(-\frac{4}{3}\right)y-6y=38
Whakakapia te -\frac{4y}{3} mō te x ki tērā atu whārite, 5x-6y=38.
-\frac{20}{3}y-6y=38
Whakareatia 5 ki te -\frac{4y}{3}.
-\frac{38}{3}y=38
Tāpiri -\frac{20y}{3} ki te -6y.
y=-3
Whakawehea ngā taha e rua o te whārite ki te -\frac{38}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{3}\left(-3\right)
Whakaurua te -3 mō y ki x=-\frac{4}{3}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4
Whakareatia -\frac{4}{3} ki te -3.
x=4,y=-3
Kua oti te pūnaha te whakatau.
3x+4y=0
Whakaarohia te whārite tuatahi. Me tāpiri te 4y ki ngā taha e rua.
3x+4y=0,5x-6y=38
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&4\\5&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\38\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&4\\5&-6\end{matrix}\right))\left(\begin{matrix}3&4\\5&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&-6\end{matrix}\right))\left(\begin{matrix}0\\38\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&4\\5&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&-6\end{matrix}\right))\left(\begin{matrix}0\\38\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&-6\end{matrix}\right))\left(\begin{matrix}0\\38\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{3\left(-6\right)-4\times 5}&-\frac{4}{3\left(-6\right)-4\times 5}\\-\frac{5}{3\left(-6\right)-4\times 5}&\frac{3}{3\left(-6\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}0\\38\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}&\frac{2}{19}\\\frac{5}{38}&-\frac{3}{38}\end{matrix}\right)\left(\begin{matrix}0\\38\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\times 38\\-\frac{3}{38}\times 38\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=-3
Tangohia ngā huānga poukapa x me y.
3x+4y=0
Whakaarohia te whārite tuatahi. Me tāpiri te 4y ki ngā taha e rua.
3x+4y=0,5x-6y=38
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 3x+5\times 4y=0,3\times 5x+3\left(-6\right)y=3\times 38
Kia ōrite ai a 3x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
15x+20y=0,15x-18y=114
Whakarūnātia.
15x-15x+20y+18y=-114
Me tango 15x-18y=114 mai i 15x+20y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y+18y=-114
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
38y=-114
Tāpiri 20y ki te 18y.
y=-3
Whakawehea ngā taha e rua ki te 38.
5x-6\left(-3\right)=38
Whakaurua te -3 mō y ki 5x-6y=38. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x+18=38
Whakareatia -6 ki te -3.
5x=20
Me tango 18 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 5.
x=4,y=-3
Kua oti te pūnaha te whakatau.