\left\{ \begin{array} { l } { 3 x + y = 3 } \\ { 5 x - y = 15 } \end{array} \right.
Whakaoti mō x, y
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
y = -\frac{15}{4} = -3\frac{3}{4} = -3.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+y=3,5x-y=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+3
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+3\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+1
Whakareatia \frac{1}{3} ki te -y+3.
5\left(-\frac{1}{3}y+1\right)-y=15
Whakakapia te -\frac{y}{3}+1 mō te x ki tērā atu whārite, 5x-y=15.
-\frac{5}{3}y+5-y=15
Whakareatia 5 ki te -\frac{y}{3}+1.
-\frac{8}{3}y+5=15
Tāpiri -\frac{5y}{3} ki te -y.
-\frac{8}{3}y=10
Me tango 5 mai i ngā taha e rua o te whārite.
y=-\frac{15}{4}
Whakawehea ngā taha e rua o te whārite ki te -\frac{8}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\left(-\frac{15}{4}\right)+1
Whakaurua te -\frac{15}{4} mō y ki x=-\frac{1}{3}y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5}{4}+1
Whakareatia -\frac{1}{3} ki te -\frac{15}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{9}{4}
Tāpiri 1 ki te \frac{5}{4}.
x=\frac{9}{4},y=-\frac{15}{4}
Kua oti te pūnaha te whakatau.
3x+y=3,5x-y=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-5}&-\frac{1}{3\left(-1\right)-5}\\-\frac{5}{3\left(-1\right)-5}&\frac{3}{3\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}3\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{5}{8}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}3\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 3+\frac{1}{8}\times 15\\\frac{5}{8}\times 3-\frac{3}{8}\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{4}\\-\frac{15}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{9}{4},y=-\frac{15}{4}
Tangohia ngā huānga poukapa x me y.
3x+y=3,5x-y=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 3x+5y=5\times 3,3\times 5x+3\left(-1\right)y=3\times 15
Kia ōrite ai a 3x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
15x+5y=15,15x-3y=45
Whakarūnātia.
15x-15x+5y+3y=15-45
Me tango 15x-3y=45 mai i 15x+5y=15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y+3y=15-45
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8y=15-45
Tāpiri 5y ki te 3y.
8y=-30
Tāpiri 15 ki te -45.
y=-\frac{15}{4}
Whakawehea ngā taha e rua ki te 8.
5x-\left(-\frac{15}{4}\right)=15
Whakaurua te -\frac{15}{4} mō y ki 5x-y=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x=\frac{45}{4}
Me tango \frac{15}{4} mai i ngā taha e rua o te whārite.
x=\frac{9}{4}
Whakawehea ngā taha e rua ki te 5.
x=\frac{9}{4},y=-\frac{15}{4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}