Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+y=2,5x-y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+2
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+2\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+\frac{2}{3}
Whakareatia \frac{1}{3} ki te -y+2.
5\left(-\frac{1}{3}y+\frac{2}{3}\right)-y=8
Whakakapia te \frac{-y+2}{3} mō te x ki tērā atu whārite, 5x-y=8.
-\frac{5}{3}y+\frac{10}{3}-y=8
Whakareatia 5 ki te \frac{-y+2}{3}.
-\frac{8}{3}y+\frac{10}{3}=8
Tāpiri -\frac{5y}{3} ki te -y.
-\frac{8}{3}y=\frac{14}{3}
Me tango \frac{10}{3} mai i ngā taha e rua o te whārite.
y=-\frac{7}{4}
Whakawehea ngā taha e rua o te whārite ki te -\frac{8}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\left(-\frac{7}{4}\right)+\frac{2}{3}
Whakaurua te -\frac{7}{4} mō y ki x=-\frac{1}{3}y+\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{7}{12}+\frac{2}{3}
Whakareatia -\frac{1}{3} ki te -\frac{7}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{4}
Tāpiri \frac{2}{3} ki te \frac{7}{12} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{4},y=-\frac{7}{4}
Kua oti te pūnaha te whakatau.
3x+y=2,5x-y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-5}&-\frac{1}{3\left(-1\right)-5}\\-\frac{5}{3\left(-1\right)-5}&\frac{3}{3\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{5}{8}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 2+\frac{1}{8}\times 8\\\frac{5}{8}\times 2-\frac{3}{8}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}\\-\frac{7}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{4},y=-\frac{7}{4}
Tangohia ngā huānga poukapa x me y.
3x+y=2,5x-y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 3x+5y=5\times 2,3\times 5x+3\left(-1\right)y=3\times 8
Kia ōrite ai a 3x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
15x+5y=10,15x-3y=24
Whakarūnātia.
15x-15x+5y+3y=10-24
Me tango 15x-3y=24 mai i 15x+5y=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y+3y=10-24
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8y=10-24
Tāpiri 5y ki te 3y.
8y=-14
Tāpiri 10 ki te -24.
y=-\frac{7}{4}
Whakawehea ngā taha e rua ki te 8.
5x-\left(-\frac{7}{4}\right)=8
Whakaurua te -\frac{7}{4} mō y ki 5x-y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x=\frac{25}{4}
Me tango \frac{7}{4} mai i ngā taha e rua o te whārite.
x=\frac{5}{4}
Whakawehea ngā taha e rua ki te 5.
x=\frac{5}{4},y=-\frac{7}{4}
Kua oti te pūnaha te whakatau.