\left\{ \begin{array} { l } { 3 x + y = 14 } \\ { y = x - 2 } \end{array} \right.
Whakaoti mō x, y
x=4
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-x=-2
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
3x+y=14,-x+y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+14
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+14\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+\frac{14}{3}
Whakareatia \frac{1}{3} ki te -y+14.
-\left(-\frac{1}{3}y+\frac{14}{3}\right)+y=-2
Whakakapia te \frac{-y+14}{3} mō te x ki tērā atu whārite, -x+y=-2.
\frac{1}{3}y-\frac{14}{3}+y=-2
Whakareatia -1 ki te \frac{-y+14}{3}.
\frac{4}{3}y-\frac{14}{3}=-2
Tāpiri \frac{y}{3} ki te y.
\frac{4}{3}y=\frac{8}{3}
Me tāpiri \frac{14}{3} ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{4}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\times 2+\frac{14}{3}
Whakaurua te 2 mō y ki x=-\frac{1}{3}y+\frac{14}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2+14}{3}
Whakareatia -\frac{1}{3} ki te 2.
x=4
Tāpiri \frac{14}{3} ki te -\frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=2
Kua oti te pūnaha te whakatau.
y-x=-2
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
3x+y=14,-x+y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-1&1\end{matrix}\right))\left(\begin{matrix}14\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-1&1\end{matrix}\right))\left(\begin{matrix}14\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-1&1\end{matrix}\right))\left(\begin{matrix}14\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-1\right)}&-\frac{1}{3-\left(-1\right)}\\-\frac{-1}{3-\left(-1\right)}&\frac{3}{3-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}14\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{1}{4}&\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}14\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 14-\frac{1}{4}\left(-2\right)\\\frac{1}{4}\times 14+\frac{3}{4}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=2
Tangohia ngā huānga poukapa x me y.
y-x=-2
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
3x+y=14,-x+y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+x+y-y=14+2
Me tango -x+y=-2 mai i 3x+y=14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3x+x=14+2
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4x=14+2
Tāpiri 3x ki te x.
4x=16
Tāpiri 14 ki te 2.
x=4
Whakawehea ngā taha e rua ki te 4.
-4+y=-2
Whakaurua te 4 mō x ki -x+y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=2
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=4,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}