\left\{ \begin{array} { l } { 3 x + y = 11 } \\ { - 4 x - y = 11 } \end{array} \right.
Whakaoti mō x, y
x=-22
y=77
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+y=11,-4x-y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+11
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+11\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+\frac{11}{3}
Whakareatia \frac{1}{3} ki te -y+11.
-4\left(-\frac{1}{3}y+\frac{11}{3}\right)-y=11
Whakakapia te \frac{-y+11}{3} mō te x ki tērā atu whārite, -4x-y=11.
\frac{4}{3}y-\frac{44}{3}-y=11
Whakareatia -4 ki te \frac{-y+11}{3}.
\frac{1}{3}y-\frac{44}{3}=11
Tāpiri \frac{4y}{3} ki te -y.
\frac{1}{3}y=\frac{77}{3}
Me tāpiri \frac{44}{3} ki ngā taha e rua o te whārite.
y=77
Me whakarea ngā taha e rua ki te 3.
x=-\frac{1}{3}\times 77+\frac{11}{3}
Whakaurua te 77 mō y ki x=-\frac{1}{3}y+\frac{11}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-77+11}{3}
Whakareatia -\frac{1}{3} ki te 77.
x=-22
Tāpiri \frac{11}{3} ki te -\frac{77}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-22,y=77
Kua oti te pūnaha te whakatau.
3x+y=11,-4x-y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\-4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\-4&-1\end{matrix}\right))\left(\begin{matrix}3&1\\-4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&-1\end{matrix}\right))\left(\begin{matrix}11\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\-4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&-1\end{matrix}\right))\left(\begin{matrix}11\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&-1\end{matrix}\right))\left(\begin{matrix}11\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-4\right)}&-\frac{1}{3\left(-1\right)-\left(-4\right)}\\-\frac{-4}{3\left(-1\right)-\left(-4\right)}&\frac{3}{3\left(-1\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}11\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-1\\4&3\end{matrix}\right)\left(\begin{matrix}11\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11-11\\4\times 11+3\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-22\\77\end{matrix}\right)
Mahia ngā tātaitanga.
x=-22,y=77
Tangohia ngā huānga poukapa x me y.
3x+y=11,-4x-y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\times 3x-4y=-4\times 11,3\left(-4\right)x+3\left(-1\right)y=3\times 11
Kia ōrite ai a 3x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-12x-4y=-44,-12x-3y=33
Whakarūnātia.
-12x+12x-4y+3y=-44-33
Me tango -12x-3y=33 mai i -12x-4y=-44 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y+3y=-44-33
Tāpiri -12x ki te 12x. Ka whakakore atu ngā kupu -12x me 12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=-44-33
Tāpiri -4y ki te 3y.
-y=-77
Tāpiri -44 ki te -33.
y=77
Whakawehea ngā taha e rua ki te -1.
-4x-77=11
Whakaurua te 77 mō y ki -4x-y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x=88
Me tāpiri 77 ki ngā taha e rua o te whārite.
x=-22
Whakawehea ngā taha e rua ki te -4.
x=-22,y=77
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}