Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+y=-1,x+5y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y-1
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y-1\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y-\frac{1}{3}
Whakareatia \frac{1}{3} ki te -y-1.
-\frac{1}{3}y-\frac{1}{3}+5y=9
Whakakapia te \frac{-y-1}{3} mō te x ki tērā atu whārite, x+5y=9.
\frac{14}{3}y-\frac{1}{3}=9
Tāpiri -\frac{y}{3} ki te 5y.
\frac{14}{3}y=\frac{28}{3}
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{14}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\times 2-\frac{1}{3}
Whakaurua te 2 mō y ki x=-\frac{1}{3}y-\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2-1}{3}
Whakareatia -\frac{1}{3} ki te 2.
x=-1
Tāpiri -\frac{1}{3} ki te -\frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=2
Kua oti te pūnaha te whakatau.
3x+y=-1,x+5y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}3&1\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-1}&-\frac{1}{3\times 5-1}\\-\frac{1}{3\times 5-1}&\frac{3}{3\times 5-1}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&-\frac{1}{14}\\-\frac{1}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-1\right)-\frac{1}{14}\times 9\\-\frac{1}{14}\left(-1\right)+\frac{3}{14}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=2
Tangohia ngā huānga poukapa x me y.
3x+y=-1,x+5y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+y=-1,3x+3\times 5y=3\times 9
Kia ōrite ai a 3x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3x+y=-1,3x+15y=27
Whakarūnātia.
3x-3x+y-15y=-1-27
Me tango 3x+15y=27 mai i 3x+y=-1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-15y=-1-27
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-14y=-1-27
Tāpiri y ki te -15y.
-14y=-28
Tāpiri -1 ki te -27.
y=2
Whakawehea ngā taha e rua ki te -14.
x+5\times 2=9
Whakaurua te 2 mō y ki x+5y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+10=9
Whakareatia 5 ki te 2.
x=-1
Me tango 10 mai i ngā taha e rua o te whārite.
x=-1,y=2
Kua oti te pūnaha te whakatau.