Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+6y=24,9x+5y=68
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+6y=24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-6y+24
Me tango 6y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-6y+24\right)
Whakawehea ngā taha e rua ki te 3.
x=-2y+8
Whakareatia \frac{1}{3} ki te -6y+24.
9\left(-2y+8\right)+5y=68
Whakakapia te -2y+8 mō te x ki tērā atu whārite, 9x+5y=68.
-18y+72+5y=68
Whakareatia 9 ki te -2y+8.
-13y+72=68
Tāpiri -18y ki te 5y.
-13y=-4
Me tango 72 mai i ngā taha e rua o te whārite.
y=\frac{4}{13}
Whakawehea ngā taha e rua ki te -13.
x=-2\times \frac{4}{13}+8
Whakaurua te \frac{4}{13} mō y ki x=-2y+8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{8}{13}+8
Whakareatia -2 ki te \frac{4}{13}.
x=\frac{96}{13}
Tāpiri 8 ki te -\frac{8}{13}.
x=\frac{96}{13},y=\frac{4}{13}
Kua oti te pūnaha te whakatau.
3x+6y=24,9x+5y=68
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&6\\9&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\68\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&6\\9&5\end{matrix}\right))\left(\begin{matrix}3&6\\9&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\9&5\end{matrix}\right))\left(\begin{matrix}24\\68\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&6\\9&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\9&5\end{matrix}\right))\left(\begin{matrix}24\\68\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\9&5\end{matrix}\right))\left(\begin{matrix}24\\68\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-6\times 9}&-\frac{6}{3\times 5-6\times 9}\\-\frac{9}{3\times 5-6\times 9}&\frac{3}{3\times 5-6\times 9}\end{matrix}\right)\left(\begin{matrix}24\\68\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{39}&\frac{2}{13}\\\frac{3}{13}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}24\\68\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{39}\times 24+\frac{2}{13}\times 68\\\frac{3}{13}\times 24-\frac{1}{13}\times 68\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{96}{13}\\\frac{4}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{96}{13},y=\frac{4}{13}
Tangohia ngā huānga poukapa x me y.
3x+6y=24,9x+5y=68
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9\times 3x+9\times 6y=9\times 24,3\times 9x+3\times 5y=3\times 68
Kia ōrite ai a 3x me 9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
27x+54y=216,27x+15y=204
Whakarūnātia.
27x-27x+54y-15y=216-204
Me tango 27x+15y=204 mai i 27x+54y=216 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
54y-15y=216-204
Tāpiri 27x ki te -27x. Ka whakakore atu ngā kupu 27x me -27x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
39y=216-204
Tāpiri 54y ki te -15y.
39y=12
Tāpiri 216 ki te -204.
y=\frac{4}{13}
Whakawehea ngā taha e rua ki te 39.
9x+5\times \frac{4}{13}=68
Whakaurua te \frac{4}{13} mō y ki 9x+5y=68. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
9x+\frac{20}{13}=68
Whakareatia 5 ki te \frac{4}{13}.
9x=\frac{864}{13}
Me tango \frac{20}{13} mai i ngā taha e rua o te whārite.
x=\frac{96}{13}
Whakawehea ngā taha e rua ki te 9.
x=\frac{96}{13},y=\frac{4}{13}
Kua oti te pūnaha te whakatau.