\left\{ \begin{array} { l } { 3 x + 5 y = 1 } \\ { 2 x - 3 y = 0 } \end{array} \right.
Whakaoti mō x, y
x=\frac{3}{19}\approx 0.157894737
y=\frac{2}{19}\approx 0.105263158
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+5y=1,2x-3y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+5y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-5y+1
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-5y+1\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{5}{3}y+\frac{1}{3}
Whakareatia \frac{1}{3} ki te -5y+1.
2\left(-\frac{5}{3}y+\frac{1}{3}\right)-3y=0
Whakakapia te \frac{-5y+1}{3} mō te x ki tērā atu whārite, 2x-3y=0.
-\frac{10}{3}y+\frac{2}{3}-3y=0
Whakareatia 2 ki te \frac{-5y+1}{3}.
-\frac{19}{3}y+\frac{2}{3}=0
Tāpiri -\frac{10y}{3} ki te -3y.
-\frac{19}{3}y=-\frac{2}{3}
Me tango \frac{2}{3} mai i ngā taha e rua o te whārite.
y=\frac{2}{19}
Whakawehea ngā taha e rua o te whārite ki te -\frac{19}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{3}\times \frac{2}{19}+\frac{1}{3}
Whakaurua te \frac{2}{19} mō y ki x=-\frac{5}{3}y+\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{10}{57}+\frac{1}{3}
Whakareatia -\frac{5}{3} ki te \frac{2}{19} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{3}{19}
Tāpiri \frac{1}{3} ki te -\frac{10}{57} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{3}{19},y=\frac{2}{19}
Kua oti te pūnaha te whakatau.
3x+5y=1,2x-3y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&5\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&5\\2&-3\end{matrix}\right))\left(\begin{matrix}3&5\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&-3\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&5\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&-3\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&-3\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-5\times 2}&-\frac{5}{3\left(-3\right)-5\times 2}\\-\frac{2}{3\left(-3\right)-5\times 2}&\frac{3}{3\left(-3\right)-5\times 2}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}&\frac{5}{19}\\\frac{2}{19}&-\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}\\\frac{2}{19}\end{matrix}\right)
Whakareatia ngā poukapa.
x=\frac{3}{19},y=\frac{2}{19}
Tangohia ngā huānga poukapa x me y.
3x+5y=1,2x-3y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\times 5y=2,3\times 2x+3\left(-3\right)y=0
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x+10y=2,6x-9y=0
Whakarūnātia.
6x-6x+10y+9y=2
Me tango 6x-9y=0 mai i 6x+10y=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10y+9y=2
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
19y=2
Tāpiri 10y ki te 9y.
y=\frac{2}{19}
Whakawehea ngā taha e rua ki te 19.
2x-3\times \frac{2}{19}=0
Whakaurua te \frac{2}{19} mō y ki 2x-3y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-\frac{6}{19}=0
Whakareatia -3 ki te \frac{2}{19}.
2x=\frac{6}{19}
Me tāpiri \frac{6}{19} ki ngā taha e rua o te whārite.
x=\frac{3}{19}
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{19},y=\frac{2}{19}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}