Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+5y=-1,3x+y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+5y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-5y-1
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-5y-1\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{5}{3}y-\frac{1}{3}
Whakareatia \frac{1}{3} ki te -5y-1.
3\left(-\frac{5}{3}y-\frac{1}{3}\right)+y=3
Whakakapia te \frac{-5y-1}{3} mō te x ki tērā atu whārite, 3x+y=3.
-5y-1+y=3
Whakareatia 3 ki te \frac{-5y-1}{3}.
-4y-1=3
Tāpiri -5y ki te y.
-4y=4
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te -4.
x=-\frac{5}{3}\left(-1\right)-\frac{1}{3}
Whakaurua te -1 mō y ki x=-\frac{5}{3}y-\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5-1}{3}
Whakareatia -\frac{5}{3} ki te -1.
x=\frac{4}{3}
Tāpiri -\frac{1}{3} ki te \frac{5}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{4}{3},y=-1
Kua oti te pūnaha te whakatau.
3x+5y=-1,3x+y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&5\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&5\\3&1\end{matrix}\right))\left(\begin{matrix}3&5\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\3&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&5\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\3&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\3&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-5\times 3}&-\frac{5}{3-5\times 3}\\-\frac{3}{3-5\times 3}&\frac{3}{3-5\times 3}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}&\frac{5}{12}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}\left(-1\right)+\frac{5}{12}\times 3\\\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{4}{3},y=-1
Tangohia ngā huānga poukapa x me y.
3x+5y=-1,3x+y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-3x+5y-y=-1-3
Me tango 3x+y=3 mai i 3x+5y=-1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y-y=-1-3
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4y=-1-3
Tāpiri 5y ki te -y.
4y=-4
Tāpiri -1 ki te -3.
y=-1
Whakawehea ngā taha e rua ki te 4.
3x-1=3
Whakaurua te -1 mō y ki 3x+y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=4
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=\frac{4}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{4}{3},y=-1
Kua oti te pūnaha te whakatau.