Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+4y=190,x-y=40
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+4y=190
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-4y+190
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-4y+190\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{4}{3}y+\frac{190}{3}
Whakareatia \frac{1}{3} ki te -4y+190.
-\frac{4}{3}y+\frac{190}{3}-y=40
Whakakapia te \frac{-4y+190}{3} mō te x ki tērā atu whārite, x-y=40.
-\frac{7}{3}y+\frac{190}{3}=40
Tāpiri -\frac{4y}{3} ki te -y.
-\frac{7}{3}y=-\frac{70}{3}
Me tango \frac{190}{3} mai i ngā taha e rua o te whārite.
y=10
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{3}\times 10+\frac{190}{3}
Whakaurua te 10 mō y ki x=-\frac{4}{3}y+\frac{190}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-40+190}{3}
Whakareatia -\frac{4}{3} ki te 10.
x=50
Tāpiri \frac{190}{3} ki te -\frac{40}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=50,y=10
Kua oti te pūnaha te whakatau.
3x+4y=190,x-y=40
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&4\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}190\\40\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&4\\1&-1\end{matrix}\right))\left(\begin{matrix}3&4\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&-1\end{matrix}\right))\left(\begin{matrix}190\\40\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&4\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&-1\end{matrix}\right))\left(\begin{matrix}190\\40\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&-1\end{matrix}\right))\left(\begin{matrix}190\\40\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-4}&-\frac{4}{3\left(-1\right)-4}\\-\frac{1}{3\left(-1\right)-4}&\frac{3}{3\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}190\\40\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{4}{7}\\\frac{1}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}190\\40\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 190+\frac{4}{7}\times 40\\\frac{1}{7}\times 190-\frac{3}{7}\times 40\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\10\end{matrix}\right)
Mahia ngā tātaitanga.
x=50,y=10
Tangohia ngā huānga poukapa x me y.
3x+4y=190,x-y=40
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+4y=190,3x+3\left(-1\right)y=3\times 40
Kia ōrite ai a 3x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3x+4y=190,3x-3y=120
Whakarūnātia.
3x-3x+4y+3y=190-120
Me tango 3x-3y=120 mai i 3x+4y=190 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y+3y=190-120
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=190-120
Tāpiri 4y ki te 3y.
7y=70
Tāpiri 190 ki te -120.
y=10
Whakawehea ngā taha e rua ki te 7.
x-10=40
Whakaurua te 10 mō y ki x-y=40. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=50
Me tāpiri 10 ki ngā taha e rua o te whārite.
x=50,y=10
Kua oti te pūnaha te whakatau.