Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+2y-7=0,x-5y+9=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+2y-7=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x+2y=7
Me tāpiri 7 ki ngā taha e rua o te whārite.
3x=-2y+7
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-2y+7\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{2}{3}y+\frac{7}{3}
Whakareatia \frac{1}{3} ki te -2y+7.
-\frac{2}{3}y+\frac{7}{3}-5y+9=0
Whakakapia te \frac{-2y+7}{3} mō te x ki tērā atu whārite, x-5y+9=0.
-\frac{17}{3}y+\frac{7}{3}+9=0
Tāpiri -\frac{2y}{3} ki te -5y.
-\frac{17}{3}y+\frac{34}{3}=0
Tāpiri \frac{7}{3} ki te 9.
-\frac{17}{3}y=-\frac{34}{3}
Me tango \frac{34}{3} mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te -\frac{17}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{3}\times 2+\frac{7}{3}
Whakaurua te 2 mō y ki x=-\frac{2}{3}y+\frac{7}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-4+7}{3}
Whakareatia -\frac{2}{3} ki te 2.
x=1
Tāpiri \frac{7}{3} ki te -\frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=2
Kua oti te pūnaha te whakatau.
3x+2y-7=0,x-5y+9=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}3&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\1&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-2}&-\frac{2}{3\left(-5\right)-2}\\-\frac{1}{3\left(-5\right)-2}&\frac{3}{3\left(-5\right)-2}\end{matrix}\right)\left(\begin{matrix}7\\-9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&\frac{2}{17}\\\frac{1}{17}&-\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}7\\-9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}\times 7+\frac{2}{17}\left(-9\right)\\\frac{1}{17}\times 7-\frac{3}{17}\left(-9\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=2
Tangohia ngā huānga poukapa x me y.
3x+2y-7=0,x-5y+9=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+2y-7=0,3x+3\left(-5\right)y+3\times 9=0
Kia ōrite ai a 3x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3x+2y-7=0,3x-15y+27=0
Whakarūnātia.
3x-3x+2y+15y-7-27=0
Me tango 3x-15y+27=0 mai i 3x+2y-7=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+15y-7-27=0
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
17y-7-27=0
Tāpiri 2y ki te 15y.
17y-34=0
Tāpiri -7 ki te -27.
17y=34
Me tāpiri 34 ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te 17.
x-5\times 2+9=0
Whakaurua te 2 mō y ki x-5y+9=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-10+9=0
Whakareatia -5 ki te 2.
x-1=0
Tāpiri -10 ki te 9.
x=1
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=1,y=2
Kua oti te pūnaha te whakatau.