\left\{ \begin{array} { l } { 3 x + 2 y = 4 } \\ { 6 x - 2 y = - 1 } \end{array} \right.
Whakaoti mō x, y
x=\frac{1}{3}\approx 0.333333333
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+2y=4,6x-2y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+2y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-2y+4
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-2y+4\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{2}{3}y+\frac{4}{3}
Whakareatia \frac{1}{3} ki te -2y+4.
6\left(-\frac{2}{3}y+\frac{4}{3}\right)-2y=-1
Whakakapia te \frac{-2y+4}{3} mō te x ki tērā atu whārite, 6x-2y=-1.
-4y+8-2y=-1
Whakareatia 6 ki te \frac{-2y+4}{3}.
-6y+8=-1
Tāpiri -4y ki te -2y.
-6y=-9
Me tango 8 mai i ngā taha e rua o te whārite.
y=\frac{3}{2}
Whakawehea ngā taha e rua ki te -6.
x=-\frac{2}{3}\times \frac{3}{2}+\frac{4}{3}
Whakaurua te \frac{3}{2} mō y ki x=-\frac{2}{3}y+\frac{4}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1+\frac{4}{3}
Whakareatia -\frac{2}{3} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{3}
Tāpiri \frac{4}{3} ki te -1.
x=\frac{1}{3},y=\frac{3}{2}
Kua oti te pūnaha te whakatau.
3x+2y=4,6x-2y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\6&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\6&-2\end{matrix}\right))\left(\begin{matrix}3&2\\6&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\6&-2\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\6&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\6&-2\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\6&-2\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-2\times 6}&-\frac{2}{3\left(-2\right)-2\times 6}\\-\frac{6}{3\left(-2\right)-2\times 6}&\frac{3}{3\left(-2\right)-2\times 6}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{1}{9}\\\frac{1}{3}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 4+\frac{1}{9}\left(-1\right)\\\frac{1}{3}\times 4-\frac{1}{6}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{3},y=\frac{3}{2}
Tangohia ngā huānga poukapa x me y.
3x+2y=4,6x-2y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 3x+6\times 2y=6\times 4,3\times 6x+3\left(-2\right)y=3\left(-1\right)
Kia ōrite ai a 3x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
18x+12y=24,18x-6y=-3
Whakarūnātia.
18x-18x+12y+6y=24+3
Me tango 18x-6y=-3 mai i 18x+12y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y+6y=24+3
Tāpiri 18x ki te -18x. Ka whakakore atu ngā kupu 18x me -18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
18y=24+3
Tāpiri 12y ki te 6y.
18y=27
Tāpiri 24 ki te 3.
y=\frac{3}{2}
Whakawehea ngā taha e rua ki te 18.
6x-2\times \frac{3}{2}=-1
Whakaurua te \frac{3}{2} mō y ki 6x-2y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-3=-1
Whakareatia -2 ki te \frac{3}{2}.
6x=2
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=\frac{1}{3}
Whakawehea ngā taha e rua ki te 6.
x=\frac{1}{3},y=\frac{3}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}