\left\{ \begin{array} { l } { 3 x + 2 y + z = 11 } \\ { 5 x + 3 y + 4 z = 2 } \\ { x + y - z = 1 } \end{array} \right.
Whakaoti mō x, y, z
x=66
y=-84
z=-19
Tohaina
Kua tāruatia ki te papatopenga
z=-3x-2y+11
Me whakaoti te 3x+2y+z=11 mō z.
5x+3y+4\left(-3x-2y+11\right)=2 x+y-\left(-3x-2y+11\right)=1
Whakakapia te -3x-2y+11 mō te z i te whārite tuarua me te tuatoru.
y=\frac{42}{5}-\frac{7}{5}x x=3-\frac{3}{4}y
Me whakaoti ēnei whārite mō y me x takitahi.
x=3-\frac{3}{4}\left(\frac{42}{5}-\frac{7}{5}x\right)
Whakakapia te \frac{42}{5}-\frac{7}{5}x mō te y i te whārite x=3-\frac{3}{4}y.
x=66
Me whakaoti te x=3-\frac{3}{4}\left(\frac{42}{5}-\frac{7}{5}x\right) mō x.
y=\frac{42}{5}-\frac{7}{5}\times 66
Whakakapia te 66 mō te x i te whārite y=\frac{42}{5}-\frac{7}{5}x.
y=-84
Tātaitia te y i te y=\frac{42}{5}-\frac{7}{5}\times 66.
z=-3\times 66-2\left(-84\right)+11
Whakakapia te -84 mō te y me te 66 mō x i te whārite z=-3x-2y+11.
z=-19
Tātaitia te z i te z=-3\times 66-2\left(-84\right)+11.
x=66 y=-84 z=-19
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}