\left\{ \begin{array} { l } { 3 x + 2 y + z = 11 } \\ { 2 x + 3 y + 2 z = 11 } \\ { 4 x + 3 y + 3 z = 11 } \end{array} \right.
Whakaoti mō x, y, z
x = \frac{11}{7} = 1\frac{4}{7} \approx 1.571428571
y = \frac{33}{7} = 4\frac{5}{7} \approx 4.714285714
z = -\frac{22}{7} = -3\frac{1}{7} \approx -3.142857143
Tohaina
Kua tāruatia ki te papatopenga
z=-3x-2y+11
Me whakaoti te 3x+2y+z=11 mō z.
2x+3y+2\left(-3x-2y+11\right)=11 4x+3y+3\left(-3x-2y+11\right)=11
Whakakapia te -3x-2y+11 mō te z i te whārite tuarua me te tuatoru.
y=-4x+11 x=-\frac{3}{5}y+\frac{22}{5}
Me whakaoti ēnei whārite mō y me x takitahi.
x=-\frac{3}{5}\left(-4x+11\right)+\frac{22}{5}
Whakakapia te -4x+11 mō te y i te whārite x=-\frac{3}{5}y+\frac{22}{5}.
x=\frac{11}{7}
Me whakaoti te x=-\frac{3}{5}\left(-4x+11\right)+\frac{22}{5} mō x.
y=-4\times \frac{11}{7}+11
Whakakapia te \frac{11}{7} mō te x i te whārite y=-4x+11.
y=\frac{33}{7}
Tātaitia te y i te y=-4\times \frac{11}{7}+11.
z=-3\times \frac{11}{7}-2\times \frac{33}{7}+11
Whakakapia te \frac{33}{7} mō te y me te \frac{11}{7} mō x i te whārite z=-3x-2y+11.
z=-\frac{22}{7}
Tātaitia te z i te z=-3\times \frac{11}{7}-2\times \frac{33}{7}+11.
x=\frac{11}{7} y=\frac{33}{7} z=-\frac{22}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}