\left\{ \begin{array} { l } { 3 m + 4 n = 7 } \\ { 4 m - 3 n - 1 = 0 } \end{array} \right.
Whakaoti mō m, n
m=1
n=1
Tohaina
Kua tāruatia ki te papatopenga
3m+4n=7,4m-3n-1=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3m+4n=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
3m=-4n+7
Me tango 4n mai i ngā taha e rua o te whārite.
m=\frac{1}{3}\left(-4n+7\right)
Whakawehea ngā taha e rua ki te 3.
m=-\frac{4}{3}n+\frac{7}{3}
Whakareatia \frac{1}{3} ki te -4n+7.
4\left(-\frac{4}{3}n+\frac{7}{3}\right)-3n-1=0
Whakakapia te \frac{-4n+7}{3} mō te m ki tērā atu whārite, 4m-3n-1=0.
-\frac{16}{3}n+\frac{28}{3}-3n-1=0
Whakareatia 4 ki te \frac{-4n+7}{3}.
-\frac{25}{3}n+\frac{28}{3}-1=0
Tāpiri -\frac{16n}{3} ki te -3n.
-\frac{25}{3}n+\frac{25}{3}=0
Tāpiri \frac{28}{3} ki te -1.
-\frac{25}{3}n=-\frac{25}{3}
Me tango \frac{25}{3} mai i ngā taha e rua o te whārite.
n=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{25}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=\frac{-4+7}{3}
Whakaurua te 1 mō n ki m=-\frac{4}{3}n+\frac{7}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=1
Tāpiri \frac{7}{3} ki te -\frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=1,n=1
Kua oti te pūnaha te whakatau.
3m+4n=7,4m-3n-1=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&4\\4&-3\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&4\\4&-3\end{matrix}\right))\left(\begin{matrix}3&4\\4&-3\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&-3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&4\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&-3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&-3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-4\times 4}&-\frac{4}{3\left(-3\right)-4\times 4}\\-\frac{4}{3\left(-3\right)-4\times 4}&\frac{3}{3\left(-3\right)-4\times 4}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{3}{25}&\frac{4}{25}\\\frac{4}{25}&-\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{3}{25}\times 7+\frac{4}{25}\\\frac{4}{25}\times 7-\frac{3}{25}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
m=1,n=1
Tangohia ngā huānga poukapa m me n.
3m+4n=7,4m-3n-1=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3m+4\times 4n=4\times 7,3\times 4m+3\left(-3\right)n+3\left(-1\right)=0
Kia ōrite ai a 3m me 4m, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12m+16n=28,12m-9n-3=0
Whakarūnātia.
12m-12m+16n+9n+3=28
Me tango 12m-9n-3=0 mai i 12m+16n=28 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
16n+9n+3=28
Tāpiri 12m ki te -12m. Ka whakakore atu ngā kupu 12m me -12m, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
25n+3=28
Tāpiri 16n ki te 9n.
25n=25
Me tango 3 mai i ngā taha e rua o te whārite.
n=1
Whakawehea ngā taha e rua ki te 25.
4m-3-1=0
Whakaurua te 1 mō n ki 4m-3n-1=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
4m-4=0
Tāpiri -3 ki te -1.
4m=4
Me tāpiri 4 ki ngā taha e rua o te whārite.
m=1
Whakawehea ngā taha e rua ki te 4.
m=1,n=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}