\left\{ \begin{array} { l } { 3 b = 2 b - a + 2 } \\ { b - a = 2 } \end{array} \right.
Whakaoti mō b, a
b=2
a=0
Tohaina
Kua tāruatia ki te papatopenga
3b-2b=-a+2
Whakaarohia te whārite tuatahi. Tangohia te 2b mai i ngā taha e rua.
b=-a+2
Pahekotia te 3b me -2b, ka b.
-a+2-a=2
Whakakapia te -a+2 mō te b ki tērā atu whārite, b-a=2.
-2a+2=2
Tāpiri -a ki te -a.
-2a=0
Me tango 2 mai i ngā taha e rua o te whārite.
a=0
Whakawehea ngā taha e rua ki te -2.
b=2
Whakaurua te 0 mō a ki b=-a+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
b=2,a=0
Kua oti te pūnaha te whakatau.
3b-2b=-a+2
Whakaarohia te whārite tuatahi. Tangohia te 2b mai i ngā taha e rua.
b=-a+2
Pahekotia te 3b me -2b, ka b.
b+a=2
Me tāpiri te a ki ngā taha e rua.
b+a=2,b-a=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}b\\a\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}b\\a\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}b\\a\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}b\\a\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}b\\a\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}b\\a\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}b\\a\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 2+\frac{1}{2}\times 2\\\frac{1}{2}\times 2-\frac{1}{2}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}b\\a\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
Mahia ngā tātaitanga.
b=2,a=0
Tangohia ngā huānga poukapa b me a.
3b-2b=-a+2
Whakaarohia te whārite tuatahi. Tangohia te 2b mai i ngā taha e rua.
b=-a+2
Pahekotia te 3b me -2b, ka b.
b+a=2
Me tāpiri te a ki ngā taha e rua.
b+a=2,b-a=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
b-b+a+a=2-2
Me tango b-a=2 mai i b+a=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
a+a=2-2
Tāpiri b ki te -b. Ka whakakore atu ngā kupu b me -b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2a=2-2
Tāpiri a ki te a.
2a=0
Tāpiri 2 ki te -2.
a=0
Whakawehea ngā taha e rua ki te 2.
b=2
Whakaurua te 0 mō a ki b-a=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
b=2,a=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}