\left\{ \begin{array} { l } { 3 ( x - 10 ) = 2 x - 10 } \\ { 3 ( y - 10 ) = 2 y - 10 \frac { x } { 2 } } \end{array} \right.
Whakaoti mō x, y
x=20
y=-70
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-30=2x-10
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-10.
3x-30-2x=-10
Tangohia te 2x mai i ngā taha e rua.
x-30=-10
Pahekotia te 3x me -2x, ka x.
x=-10+30
Me tāpiri te 30 ki ngā taha e rua.
x=20
Tāpirihia te -10 ki te 30, ka 20.
3\left(y-10\right)=2y-10\times \frac{20}{2}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
3y-30=2y-10\times \frac{20}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-10.
3y-30=2y-10\times 10
Whakawehea te 20 ki te 2, kia riro ko 10.
3y-30=2y-100
Whakareatia te 10 ki te 10, ka 100.
3y-30-2y=-100
Tangohia te 2y mai i ngā taha e rua.
y-30=-100
Pahekotia te 3y me -2y, ka y.
y=-100+30
Me tāpiri te 30 ki ngā taha e rua.
y=-70
Tāpirihia te -100 ki te 30, ka -70.
x=20 y=-70
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}