Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-3-4\left(y-4\right)=0
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-1.
3x-3-4y+16=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te y-4.
3x+13-4y=0
Tāpirihia te -3 ki te 16, ka 13.
3x-4y=-13
Tangohia te 13 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
5y-5=3\left(x+5\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te y-1.
5y-5=3x+15
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+5.
5y-5-3x=15
Tangohia te 3x mai i ngā taha e rua.
5y-3x=15+5
Me tāpiri te 5 ki ngā taha e rua.
5y-3x=20
Tāpirihia te 15 ki te 5, ka 20.
3x-4y=-13,-3x+5y=20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-4y=-13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=4y-13
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(4y-13\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{4}{3}y-\frac{13}{3}
Whakareatia \frac{1}{3} ki te 4y-13.
-3\left(\frac{4}{3}y-\frac{13}{3}\right)+5y=20
Whakakapia te \frac{4y-13}{3} mō te x ki tērā atu whārite, -3x+5y=20.
-4y+13+5y=20
Whakareatia -3 ki te \frac{4y-13}{3}.
y+13=20
Tāpiri -4y ki te 5y.
y=7
Me tango 13 mai i ngā taha e rua o te whārite.
x=\frac{4}{3}\times 7-\frac{13}{3}
Whakaurua te 7 mō y ki x=\frac{4}{3}y-\frac{13}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{28-13}{3}
Whakareatia \frac{4}{3} ki te 7.
x=5
Tāpiri -\frac{13}{3} ki te \frac{28}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5,y=7
Kua oti te pūnaha te whakatau.
3x-3-4\left(y-4\right)=0
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-1.
3x-3-4y+16=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te y-4.
3x+13-4y=0
Tāpirihia te -3 ki te 16, ka 13.
3x-4y=-13
Tangohia te 13 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
5y-5=3\left(x+5\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te y-1.
5y-5=3x+15
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+5.
5y-5-3x=15
Tangohia te 3x mai i ngā taha e rua.
5y-3x=15+5
Me tāpiri te 5 ki ngā taha e rua.
5y-3x=20
Tāpirihia te 15 ki te 5, ka 20.
3x-4y=-13,-3x+5y=20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-4\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-13\\20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-4\\-3&5\end{matrix}\right))\left(\begin{matrix}3&-4\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\-3&5\end{matrix}\right))\left(\begin{matrix}-13\\20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-4\\-3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\-3&5\end{matrix}\right))\left(\begin{matrix}-13\\20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\-3&5\end{matrix}\right))\left(\begin{matrix}-13\\20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-\left(-4\left(-3\right)\right)}&-\frac{-4}{3\times 5-\left(-4\left(-3\right)\right)}\\-\frac{-3}{3\times 5-\left(-4\left(-3\right)\right)}&\frac{3}{3\times 5-\left(-4\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}-13\\20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}&\frac{4}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}-13\\20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\left(-13\right)+\frac{4}{3}\times 20\\-13+20\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=7
Tangohia ngā huānga poukapa x me y.
3x-3-4\left(y-4\right)=0
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-1.
3x-3-4y+16=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te y-4.
3x+13-4y=0
Tāpirihia te -3 ki te 16, ka 13.
3x-4y=-13
Tangohia te 13 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
5y-5=3\left(x+5\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te y-1.
5y-5=3x+15
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+5.
5y-5-3x=15
Tangohia te 3x mai i ngā taha e rua.
5y-3x=15+5
Me tāpiri te 5 ki ngā taha e rua.
5y-3x=20
Tāpirihia te 15 ki te 5, ka 20.
3x-4y=-13,-3x+5y=20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 3x-3\left(-4\right)y=-3\left(-13\right),3\left(-3\right)x+3\times 5y=3\times 20
Kia ōrite ai a 3x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-9x+12y=39,-9x+15y=60
Whakarūnātia.
-9x+9x+12y-15y=39-60
Me tango -9x+15y=60 mai i -9x+12y=39 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y-15y=39-60
Tāpiri -9x ki te 9x. Ka whakakore atu ngā kupu -9x me 9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=39-60
Tāpiri 12y ki te -15y.
-3y=-21
Tāpiri 39 ki te -60.
y=7
Whakawehea ngā taha e rua ki te -3.
-3x+5\times 7=20
Whakaurua te 7 mō y ki -3x+5y=20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+35=20
Whakareatia 5 ki te 7.
-3x=-15
Me tango 35 mai i ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te -3.
x=5,y=7
Kua oti te pūnaha te whakatau.