\left\{ \begin{array} { l } { 3 ( x - 1 ) = 2 ( y - 1 ) } \\ { 4 ( y - 1 ) = 3 ( x + 5 ) } \end{array} \right.
Whakaoti mō x, y
x=7
y=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-3=2\left(y-1\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-1.
3x-3=2y-2
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-1.
3x-3-2y=-2
Tangohia te 2y mai i ngā taha e rua.
3x-2y=-2+3
Me tāpiri te 3 ki ngā taha e rua.
3x-2y=1
Tāpirihia te -2 ki te 3, ka 1.
4y-4=3\left(x+5\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te y-1.
4y-4=3x+15
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+5.
4y-4-3x=15
Tangohia te 3x mai i ngā taha e rua.
4y-3x=15+4
Me tāpiri te 4 ki ngā taha e rua.
4y-3x=19
Tāpirihia te 15 ki te 4, ka 19.
3x-2y=1,-3x+4y=19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=2y+1
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(2y+1\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y+\frac{1}{3}
Whakareatia \frac{1}{3} ki te 2y+1.
-3\left(\frac{2}{3}y+\frac{1}{3}\right)+4y=19
Whakakapia te \frac{2y+1}{3} mō te x ki tērā atu whārite, -3x+4y=19.
-2y-1+4y=19
Whakareatia -3 ki te \frac{2y+1}{3}.
2y-1=19
Tāpiri -2y ki te 4y.
2y=20
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=10
Whakawehea ngā taha e rua ki te 2.
x=\frac{2}{3}\times 10+\frac{1}{3}
Whakaurua te 10 mō y ki x=\frac{2}{3}y+\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{20+1}{3}
Whakareatia \frac{2}{3} ki te 10.
x=7
Tāpiri \frac{1}{3} ki te \frac{20}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=7,y=10
Kua oti te pūnaha te whakatau.
3x-3=2\left(y-1\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-1.
3x-3=2y-2
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-1.
3x-3-2y=-2
Tangohia te 2y mai i ngā taha e rua.
3x-2y=-2+3
Me tāpiri te 3 ki ngā taha e rua.
3x-2y=1
Tāpirihia te -2 ki te 3, ka 1.
4y-4=3\left(x+5\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te y-1.
4y-4=3x+15
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+5.
4y-4-3x=15
Tangohia te 3x mai i ngā taha e rua.
4y-3x=15+4
Me tāpiri te 4 ki ngā taha e rua.
4y-3x=19
Tāpirihia te 15 ki te 4, ka 19.
3x-2y=1,-3x+4y=19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}3&-2\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}1\\19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\-3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}1\\19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}1\\19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-2\left(-3\right)\right)}&-\frac{-2}{3\times 4-\left(-2\left(-3\right)\right)}\\-\frac{-3}{3\times 4-\left(-2\left(-3\right)\right)}&\frac{3}{3\times 4-\left(-2\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}1\\19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}+\frac{1}{3}\times 19\\\frac{1}{2}+\frac{1}{2}\times 19\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\10\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=10
Tangohia ngā huānga poukapa x me y.
3x-3=2\left(y-1\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-1.
3x-3=2y-2
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-1.
3x-3-2y=-2
Tangohia te 2y mai i ngā taha e rua.
3x-2y=-2+3
Me tāpiri te 3 ki ngā taha e rua.
3x-2y=1
Tāpirihia te -2 ki te 3, ka 1.
4y-4=3\left(x+5\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te y-1.
4y-4=3x+15
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+5.
4y-4-3x=15
Tangohia te 3x mai i ngā taha e rua.
4y-3x=15+4
Me tāpiri te 4 ki ngā taha e rua.
4y-3x=19
Tāpirihia te 15 ki te 4, ka 19.
3x-2y=1,-3x+4y=19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 3x-3\left(-2\right)y=-3,3\left(-3\right)x+3\times 4y=3\times 19
Kia ōrite ai a 3x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-9x+6y=-3,-9x+12y=57
Whakarūnātia.
-9x+9x+6y-12y=-3-57
Me tango -9x+12y=57 mai i -9x+6y=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-12y=-3-57
Tāpiri -9x ki te 9x. Ka whakakore atu ngā kupu -9x me 9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6y=-3-57
Tāpiri 6y ki te -12y.
-6y=-60
Tāpiri -3 ki te -57.
y=10
Whakawehea ngā taha e rua ki te -6.
-3x+4\times 10=19
Whakaurua te 10 mō y ki -3x+4y=19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+40=19
Whakareatia 4 ki te 10.
-3x=-21
Me tango 40 mai i ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua ki te -3.
x=7,y=10
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}