Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+3y-4\left(x-y\right)=-18
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+y.
3x+3y-4x+4y=-18
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te x-y.
-x+3y+4y=-18
Pahekotia te 3x me -4x, ka -x.
-x+7y=-18
Pahekotia te 3y me 4y, ka 7y.
\frac{1}{2}x+\frac{1}{2}y+\frac{1}{6}\left(x-y\right)=2
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te x+y.
\frac{1}{2}x+\frac{1}{2}y+\frac{1}{6}x-\frac{1}{6}y=2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{6} ki te x-y.
\frac{2}{3}x+\frac{1}{2}y-\frac{1}{6}y=2
Pahekotia te \frac{1}{2}x me \frac{1}{6}x, ka \frac{2}{3}x.
\frac{2}{3}x+\frac{1}{3}y=2
Pahekotia te \frac{1}{2}y me -\frac{1}{6}y, ka \frac{1}{3}y.
-x+7y=-18,\frac{2}{3}x+\frac{1}{3}y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+7y=-18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=-7y-18
Me tango 7y mai i ngā taha e rua o te whārite.
x=-\left(-7y-18\right)
Whakawehea ngā taha e rua ki te -1.
x=7y+18
Whakareatia -1 ki te -7y-18.
\frac{2}{3}\left(7y+18\right)+\frac{1}{3}y=2
Whakakapia te 7y+18 mō te x ki tērā atu whārite, \frac{2}{3}x+\frac{1}{3}y=2.
\frac{14}{3}y+12+\frac{1}{3}y=2
Whakareatia \frac{2}{3} ki te 7y+18.
5y+12=2
Tāpiri \frac{14y}{3} ki te \frac{y}{3}.
5y=-10
Me tango 12 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te 5.
x=7\left(-2\right)+18
Whakaurua te -2 mō y ki x=7y+18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-14+18
Whakareatia 7 ki te -2.
x=4
Tāpiri 18 ki te -14.
x=4,y=-2
Kua oti te pūnaha te whakatau.
3x+3y-4\left(x-y\right)=-18
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+y.
3x+3y-4x+4y=-18
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te x-y.
-x+3y+4y=-18
Pahekotia te 3x me -4x, ka -x.
-x+7y=-18
Pahekotia te 3y me 4y, ka 7y.
\frac{1}{2}x+\frac{1}{2}y+\frac{1}{6}\left(x-y\right)=2
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te x+y.
\frac{1}{2}x+\frac{1}{2}y+\frac{1}{6}x-\frac{1}{6}y=2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{6} ki te x-y.
\frac{2}{3}x+\frac{1}{2}y-\frac{1}{6}y=2
Pahekotia te \frac{1}{2}x me \frac{1}{6}x, ka \frac{2}{3}x.
\frac{2}{3}x+\frac{1}{3}y=2
Pahekotia te \frac{1}{2}y me -\frac{1}{6}y, ka \frac{1}{3}y.
-x+7y=-18,\frac{2}{3}x+\frac{1}{3}y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&7\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&7\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-1&7\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&7\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-18\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&7\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&7\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-18\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&7\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-18\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{-\frac{1}{3}-7\times \frac{2}{3}}&-\frac{7}{-\frac{1}{3}-7\times \frac{2}{3}}\\-\frac{\frac{2}{3}}{-\frac{1}{3}-7\times \frac{2}{3}}&-\frac{1}{-\frac{1}{3}-7\times \frac{2}{3}}\end{matrix}\right)\left(\begin{matrix}-18\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}&\frac{7}{5}\\\frac{2}{15}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-18\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}\left(-18\right)+\frac{7}{5}\times 2\\\frac{2}{15}\left(-18\right)+\frac{1}{5}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=-2
Tangohia ngā huānga poukapa x me y.
3x+3y-4\left(x-y\right)=-18
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+y.
3x+3y-4x+4y=-18
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te x-y.
-x+3y+4y=-18
Pahekotia te 3x me -4x, ka -x.
-x+7y=-18
Pahekotia te 3y me 4y, ka 7y.
\frac{1}{2}x+\frac{1}{2}y+\frac{1}{6}\left(x-y\right)=2
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te x+y.
\frac{1}{2}x+\frac{1}{2}y+\frac{1}{6}x-\frac{1}{6}y=2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{6} ki te x-y.
\frac{2}{3}x+\frac{1}{2}y-\frac{1}{6}y=2
Pahekotia te \frac{1}{2}x me \frac{1}{6}x, ka \frac{2}{3}x.
\frac{2}{3}x+\frac{1}{3}y=2
Pahekotia te \frac{1}{2}y me -\frac{1}{6}y, ka \frac{1}{3}y.
-x+7y=-18,\frac{2}{3}x+\frac{1}{3}y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{2}{3}\left(-1\right)x+\frac{2}{3}\times 7y=\frac{2}{3}\left(-18\right),-\frac{2}{3}x-\frac{1}{3}y=-2
Kia ōrite ai a -x me \frac{2x}{3}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{2}{3} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-\frac{2}{3}x+\frac{14}{3}y=-12,-\frac{2}{3}x-\frac{1}{3}y=-2
Whakarūnātia.
-\frac{2}{3}x+\frac{2}{3}x+\frac{14}{3}y+\frac{1}{3}y=-12+2
Me tango -\frac{2}{3}x-\frac{1}{3}y=-2 mai i -\frac{2}{3}x+\frac{14}{3}y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{14}{3}y+\frac{1}{3}y=-12+2
Tāpiri -\frac{2x}{3} ki te \frac{2x}{3}. Ka whakakore atu ngā kupu -\frac{2x}{3} me \frac{2x}{3}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=-12+2
Tāpiri \frac{14y}{3} ki te \frac{y}{3}.
5y=-10
Tāpiri -12 ki te 2.
y=-2
Whakawehea ngā taha e rua ki te 5.
\frac{2}{3}x+\frac{1}{3}\left(-2\right)=2
Whakaurua te -2 mō y ki \frac{2}{3}x+\frac{1}{3}y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{2}{3}x-\frac{2}{3}=2
Whakareatia \frac{1}{3} ki te -2.
\frac{2}{3}x=\frac{8}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=4,y=-2
Kua oti te pūnaha te whakatau.