\left\{ \begin{array} { l } { 3 ( x + y ) + 9 = 2 ( x - y ) } \\ { 2 ( x + y ) = 3 ( x - y ) - 4 } \end{array} \right.
Whakaoti mō x, y
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
y = -\frac{13}{10} = -1\frac{3}{10} = -1.3
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+3y+9=2\left(x-y\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+y.
3x+3y+9=2x-2y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-y.
3x+3y+9-2x=-2y
Tangohia te 2x mai i ngā taha e rua.
x+3y+9=-2y
Pahekotia te 3x me -2x, ka x.
x+3y+9+2y=0
Me tāpiri te 2y ki ngā taha e rua.
x+5y+9=0
Pahekotia te 3y me 2y, ka 5y.
x+5y=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2x+2y=3\left(x-y\right)-4
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+y.
2x+2y=3x-3y-4
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-y.
2x+2y-3x=-3y-4
Tangohia te 3x mai i ngā taha e rua.
-x+2y=-3y-4
Pahekotia te 2x me -3x, ka -x.
-x+2y+3y=-4
Me tāpiri te 3y ki ngā taha e rua.
-x+5y=-4
Pahekotia te 2y me 3y, ka 5y.
x+5y=-9,-x+5y=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+5y=-9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-5y-9
Me tango 5y mai i ngā taha e rua o te whārite.
-\left(-5y-9\right)+5y=-4
Whakakapia te -5y-9 mō te x ki tērā atu whārite, -x+5y=-4.
5y+9+5y=-4
Whakareatia -1 ki te -5y-9.
10y+9=-4
Tāpiri 5y ki te 5y.
10y=-13
Me tango 9 mai i ngā taha e rua o te whārite.
y=-\frac{13}{10}
Whakawehea ngā taha e rua ki te 10.
x=-5\left(-\frac{13}{10}\right)-9
Whakaurua te -\frac{13}{10} mō y ki x=-5y-9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{13}{2}-9
Whakareatia -5 ki te -\frac{13}{10}.
x=-\frac{5}{2}
Tāpiri -9 ki te \frac{13}{2}.
x=-\frac{5}{2},y=-\frac{13}{10}
Kua oti te pūnaha te whakatau.
3x+3y+9=2\left(x-y\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+y.
3x+3y+9=2x-2y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-y.
3x+3y+9-2x=-2y
Tangohia te 2x mai i ngā taha e rua.
x+3y+9=-2y
Pahekotia te 3x me -2x, ka x.
x+3y+9+2y=0
Me tāpiri te 2y ki ngā taha e rua.
x+5y+9=0
Pahekotia te 3y me 2y, ka 5y.
x+5y=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2x+2y=3\left(x-y\right)-4
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+y.
2x+2y=3x-3y-4
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-y.
2x+2y-3x=-3y-4
Tangohia te 3x mai i ngā taha e rua.
-x+2y=-3y-4
Pahekotia te 2x me -3x, ka -x.
-x+2y+3y=-4
Me tāpiri te 3y ki ngā taha e rua.
-x+5y=-4
Pahekotia te 2y me 3y, ka 5y.
x+5y=-9,-x+5y=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&5\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&5\\-1&5\end{matrix}\right))\left(\begin{matrix}1&5\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\-1&5\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&5\\-1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\-1&5\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\-1&5\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-5\left(-1\right)}&-\frac{5}{5-5\left(-1\right)}\\-\frac{-1}{5-5\left(-1\right)}&\frac{1}{5-5\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-9\right)-\frac{1}{2}\left(-4\right)\\\frac{1}{10}\left(-9\right)+\frac{1}{10}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\\-\frac{13}{10}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{5}{2},y=-\frac{13}{10}
Tangohia ngā huānga poukapa x me y.
3x+3y+9=2\left(x-y\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+y.
3x+3y+9=2x-2y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-y.
3x+3y+9-2x=-2y
Tangohia te 2x mai i ngā taha e rua.
x+3y+9=-2y
Pahekotia te 3x me -2x, ka x.
x+3y+9+2y=0
Me tāpiri te 2y ki ngā taha e rua.
x+5y+9=0
Pahekotia te 3y me 2y, ka 5y.
x+5y=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2x+2y=3\left(x-y\right)-4
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+y.
2x+2y=3x-3y-4
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-y.
2x+2y-3x=-3y-4
Tangohia te 3x mai i ngā taha e rua.
-x+2y=-3y-4
Pahekotia te 2x me -3x, ka -x.
-x+2y+3y=-4
Me tāpiri te 3y ki ngā taha e rua.
-x+5y=-4
Pahekotia te 2y me 3y, ka 5y.
x+5y=-9,-x+5y=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x+x+5y-5y=-9+4
Me tango -x+5y=-4 mai i x+5y=-9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x+x=-9+4
Tāpiri 5y ki te -5y. Ka whakakore atu ngā kupu 5y me -5y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=-9+4
Tāpiri x ki te x.
2x=-5
Tāpiri -9 ki te 4.
x=-\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
-\left(-\frac{5}{2}\right)+5y=-4
Whakaurua te -\frac{5}{2} mō x ki -x+5y=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
\frac{5}{2}+5y=-4
Whakareatia -1 ki te -\frac{5}{2}.
5y=-\frac{13}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
y=-\frac{13}{10}
Whakawehea ngā taha e rua ki te 5.
x=-\frac{5}{2},y=-\frac{13}{10}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}